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RESUMO

School timetabling é uma variação do Problema de Alocação de Horários que busca
uma alocação periódica de aulas para alunos e professores de uma escola, que deve
seguir um conjunto de restrições fortes e fracas. Timetabling é um problema NP-Hard
e, por causa de sua dificuldade, o uso de heurísticas para solucionar o problema é uma
prática comum. Quando apenas as restrições fortes são consideradas, o problema
timetabling pode ser reduzido para a coloração de grafos e a similaridade entre esses
problemas tem motivado o uso de heurísticas para coloração de grafos como um meio
de solucionar o problema de timetabling. Esse trabalho propõe uma otimização em
dois passos para solucionar o problema de school timetabling, onde no primeiro passo
o problema é reduzido para coloração de grafos e o circuito quântico do Quantum

Approximate Optimization Algorithm (QAOA) para a solução do problema do número
cromático é usado para resolver as restrições fortes e no segundo passo o processo de
otimização clássico do QAOA é usado para solucionar as restrições fracas. A heurística
foi testada em instâncias de benchmark do banco de dados do XHSTT. Os circuitos
quânticos do trabalho possuíam até 189 qubits e foram simulados em um ambiente
sem ruído. Essa pesquisa e seus resultados são um trabalho seminal no uso do QAOA
como heurística para o problema de timetabling.

Palavras-chave: qaoa, computação quântica, timetabling problem, school timetabling



RESUMO EXPANDIDO

Introdução

Timetabling pode ser visto como um problema de otimização combinatória. Esses
problemas são sobre como encontrar a solução ótima para uma atribuição de valores
a variáveis discretas de acordo com alguns critérios, chamados de restrições fortes
e fracas. As restrições fortes definem a viabilidade da solução e as restrições fracas
definem sua qualidade. Para o School Timetabling Problem, a solução ótima é definida
como um horário viável que satisfaça a quantidade máxima de restrições fracas.

Considerando-se apenas as restrições fortes, o problema de Timetabling pode ser
representado como um problema de coloração dos vértices de um grafo. Colorir um
grafo é equivalente a encontrar a quantidade de períodos de tempo necessários para
agendar os eventos sem conflito de tempo. A similaridade entre Timetabling e colora-
ção de grafos tem motivado o uso de heurísticas de coloração de grafos para resolver
o problema de Timetabling.

Os computadores quânticos atuais estão sob o regime Noise Intermediate-Scale Quan-

tum (NISQ). Eles têm conectividade de circuito limitada e baixa qualidade de qubits.
Além disso, seu tamanho varia de 50 a 100 qubits. Essas limitações impedem a imple-
mentação de alguns dos algoritmos quânticos mais notáveis. Porém, esse regime atual
é suficiente para rodar algoritmos quânticos difíceis de simular em hardware clássico,
alcançando a chamada supremacia quântica. No entanto, uma importante questão em
aberto é se os computadores quânticos podem fornecer um aumento de velocidade,
o que muitas vezes é chamado de vantagem quântica, na solução de problemas de
otimização combinatória classicamente difíceis, já que muitos problemas do mundo
real se enquadram nesta categoria. Devido à sua ampla aplicabilidade, o Quantum

Approximate Optimization Algorithm (QAOA) já foi usado como uma heurística para
resolver esta classe de problemas.

Assim, este trabalho levanta as seguintes questões: O QAOA pode ser usado como
uma heurística para o School Timetabling Problem modelado como um Problema
de Coloração de Grafos? Que tipo de vantagem essa heurística pode oferecer ao
problema?

Objetivos

Objetivo Geral: Este trabalho tem como objetivo propor uma nova heurística quântica
para o School Timetabling Problem e comparar seu desempenho com as heurísticas
clássicas atualmente conhecidas.

Objetivos Específicos:

• Objetivo 1: Estudar o estado da arte do QAOA;



• Objetivo 2: Estudar o estado da arte das heurísticas para o School Timetabling

Problem;

• Objetivo 3: Compilar a estrutura QAOA descrita em (HADFIELD, 2018) para um
circuito quântico;

• Objetivo 4: Comparar a eficiência da solução proposta com o estado da arte das
heurísticas clássicas.

Metodologia

A pesquisa aqui apresentada é quantitativa porque propõe uma comparação relacio-
nada à qualidade dos métodos computacionais desenvolvidos durante o trabalho.

1. Estudo do estado da arte do QAOA;

2. Análise do framework QAOA para resolução de problemas com restrições fortes
e fracas;

3. Compilação do framework QAOA para a linguagem Ket;

4. Estudo do estado da arte em heurísticas para Timetabling;

5. Comparação entre QAOA e outras heurísticas;

6. Redação de artigos científicos;

7. Redação da tese

Resultados

Foi desenvolvido uma nova heurística quântica para o School Timetabling Problem,
com seus primeiros resultados publicados em (PIRES; SANTIAGO; MARCHI, 2021).
Todo o código utilizado pelo trabalho pode ser encontrado em um repositório no Gi-
tLab(PIRES, 2021). As implementações deste trabalho também forneceram um ben-

chmark para o Ket Bitwise Simulator.

Discussão e Considerações

Este trabalho propõe o uso do QAOA como heurística para a solução do School Time-

tabling Problem. Foi desenvolvido um processo de otimização de dois estágios, onde
no primeiro estágio o circuito quântico QAOA para o problema da coloração mínima de
grafos otimiza as restrições fortes do cronograma e no segundo estágio o laço de oti-
mização clássico do QAOA otimiza as restrições fracas. Consideramos esta pesquisa
e seus resultados um trabalho seminal no uso de QAOA como uma heurística para o
problema de Timetabling.

O método foi testado usando três instâncias diferentes. A instância Denmark-Smallschool
do Dataset XHSTT e duas instâncias derivadas, Den-Aux e Den-5. Os circuitos quânti-
cos foram simulados em um ambiente sem ruído usando o Parallel Bitwise Simulator

para a linguagem de programação quântica Ket (DA ROSA; DE SANTIAGO, 2021). As
instâncias exigiram até 189 qubits para serem simuladas.



A heurística não conseguiu otimizar a instância original Denmark-Smallschool devido
ao misturador do QAOA ser incapaz de alcançar soluções diferentes. É possível que
este comportamento indique que a heurística também terá dificuldades em otimizar
instâncias difíceis do problema de Timetabling. Em relação às instâncias derivadas,
a heurística não foi capaz de encontrar resultados melhores do que o estado inicial
para a instância Den-Aux, no entanto, para a instância Den-5, a heurística foi capaz de
convergir para um resultado otimizado com o parâmetro de profundidade p = 2. Isso
pode indicar o potencial de usar essa heurística em computadores quânticos atuais,
pois a profundidade necessária para o QAOA é baixa.

Palavras-chave: qaoa, computação quântica, timetabling problem, school timetabling



ABSTRACT

School timetabling is a variation of the Timetabling problem that searches for a periodic
scheduling of lessons for classes and teachers of a school, that must meet a set of hard
and soft constraints. Timetabling is an NP-Hard problem and because of its difficulty, the
use of heuristics to address it is a common practice. When only the hard constraints are
considered, the timetabling problem can be reduced to graph vertex coloring and the
similarity between both problems has motivated the use of graph coloring heuristics as
a means to tackle the timetabling problem. We propose to tackle the school timetabling
problem by applying a Two-stage optimization, where in the first stage we reduce it to
a graph coloring problem and use the Quantum Approximate Optimization Algorithm
(QAOA) quantum circuit for solving the chromatic number problem to address the hard
constraints and on the second stage we address the soft constraints of the timetabling
problem by using the classical optimization process of QAOA. We tested our heuristic
using benchmark instances from the XHSTT dataset and we simulated quantum circuits
up to 189 qubits in a noiseless environment. We consider this research and its findings
a seminal work in using QAOA as a heuristic for the timetabling problem.

Keywords: qaoa, quantum computing, school timetabling, timetabling problem
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1 INTRODUCTION

1.1 Timetabling Problem

Timetables are crucial to many organizations. Public transportation, schools, and

universities regularly use timetables to organize time. In fact it is difficult to imagine an

organized and modern society that does not use them. The problem of constructing

a timetable is considered NP-complete (EVEN; ITAI; SHAMIR, 1976) and despite its

widespread use, it is unknown a polynomial-time exact method to construct timetables.

Factors such as the limitation of resources, e.g. people or time, or the many aspects

that differentiate the quality of a timetable increase its difficulty. Many works have ad-

dressed this problem (HILTON, 1981; DE WERRA, 1985; COLBOURN; OORSCHOT,

1989; SCHAERF, 1999; BELIGIANNIS et al., 2008; RAGHAVJEE; PILLAY, 2009; PIL-

LAY, Nelishia, 2013; RIBIĆ; TURČINHOŽIĆ; MURATOVIĆ-RIBIĆ, 2015; VEENSTRA;

VIS, 2016) and the need for better timetables solutions still motivates further research

nowadays (TURCINHODZIC et al., 2019; SAVINIEC et al., 2020; TAN et al., 2021).

Timetabling can be seen as a combinatorial optimization problem (WERRA;

KOBLER, 2014). These problems are about finding the optimal solution to an assign-

ment of discrete values to variables according to some criteria, called hard and soft

constraints. The hard constraints define the feasibility of the solution and the soft con-

straints define its quality. For the school timetabling problem, the optimal solution is

defined as a feasible timetable that satisfies the maximum amount of soft constraints.

Finding an exact solution to the timetabling problem is considered NP-Hard (COOPER;

KINGSTON, 1996). Because of that, meta-heuristics have been widely employed to

tackle timetabling problems, instead of using exact methods (FONSECA; SANTOS;

CARRANO, 2016).

Considering only the hard constraints, the timetabling problem can be repre-

sented as a graph vertex coloring problem. A graph coloring is obtained by choosing a

color for each node of the graph in a way that none of its neighbors share its color and

serves as a general model for conflict resolution. When applied to the school timetabling

problem, a conflict graph is created where each edge represents a time conflict of a

student or a teacher. Coloring the conflict graph is equivalent to find the length of time

periods required to schedule the lectures without time conflict. The similarity between

timetabling and graph coloring has motivated the use of graph coloring heuristics to

tackle the timetabling problem (DE WERRA, 1985; BUDIONO; WONG, 2012).

1.2 Quantum computation and quantum algorithms

Current state-of-the-art quantum computers are referred to as Noise Intermediate-

Scale Quantum (NISQ) computers (PRESKILL, 2018). They have limited circuit con-
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nectivity and qubit quality. Moreover, their size ranges from 50 to 100 qubits. These

limitations prevent the implementation of some of the most notable quantum algo-

rithms (GIDNEY; EKERÅ, 2021). However, this current regime is enough to run quan-

tum algorithms which are hard to simulate on classical hardware, achieving the so

called quantum supremacy (ARUTE et al., 2019).

Considering the scarcity of the available resources, the key question is how to

make the best use of NISQ devices to run algorithms capable of solving real world

problems. The most promising candidate for running on current quantum computers

are the class of Variational Quantum Algorithms (VQA) (CEREZO et al., 2020). VQA

are hybrid quantum-classical algorithms that optimize a cost function encoded by the

expectation value of a parametrized quantum circuit, sometimes referred as an ansatz.

This ansatz is trained in a hybrid quantum-classical loop, where a classical optimization

algorithm make functions calls to a quantum computer to optimize the expectation value

over the quantum circuit’s parameters. In contrast to quantum algorithms developed for

the fault-tolerant era, VQA are capable of keeping the quantum circuit depth shallow,

hence mitigating noise, by leveraging the power of classical optimizers to train the

parameters of its quantum circuit. Two examples of VQA are the Quantum Approximate

Optimization Algorithm (QAOA) (FARHI; GOLDSTONE; GUTMANN, 2014) and the

Variational Quantum Eigensolver (VQE) (PERUZZO et al., 2014).

Nevertheless, an important open question is whether quantum computers can

provide an speedup, which is often called quantum advantage, in solving classically

hard combinatorial optimization problems, as many real world problems fall in this

category. Due to its broad applicability, QAOA was used before as an heuristic to

address this class of problems, for example the Vehicle Routing Problem (UTKARSH;

BEHERA; PANIGRAHI, 2020) and the Tail Assignment Problem (VIKSTÅL et al., 2020),

in both cases the instances used at most 25 qubits. Although it is an emerging topic,

for the best of our knowledge, it is lacking an investigation over classical optimization

problems. So, we rise the following questions:

Can QAOA be used as an heuristic for the School Timetabling Problem modeled

as a Graph Coloring Problem? Which kind of advantage this heuristic can offer to the

problem?

1.3 Main Objective

Our work has the goal to propose a new quantum heuristic for the School

Timetabling Optimization Problem and to compare its performance against current

known classical heuristics.

Research question: Can QAOA be used as an heuristic for the School Timetabling

Problem modeled as a Graph Coloring Problem? Which kind of advantage this heuristic

can offer to the problem?
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1.4 Objectives

• Objective 1: To study the state-of-the-art of QAOA;

• Objective 2: To study the state-of-the-art of Timetabling Optimization Problem

heuristics;

• Objective 3: To compile the QAOA framework described in (HADFIELD, 2018) to

a quantum circuit;

• Objective 4: To compare the efficiency of our solution against state-of-the-art

classical heuristics.

1.5 Scope

We explore the use of Quantum Approximate Optimization Algorithm as a heuris-

tic to address the School Timetabling Problem when modeled as a Graph Coloring

Problem. We use benchmark instances for High School Timetabling from (POST et al.,

2012). We choose the Parallel Bitwise Simulator for the Ket Quantum Programming

Language (DA ROSA; DE SANTIAGO, 2021) to run our quantum circuit because it is

able to simulate circuits with more qubits than other available simulators. We simulate

the quantum circuit in a noiseless environment and required up to 189 qubits to simulate

our quantum circuit.

1.6 Methodology

The research presented here is quantitative because it proposes a comparison

related to the quality of the computational methods developed during the work.

1. Study of the state-of-the-art of QAOA;

2. Analysis of the QAOA framework for solving problems with hard and soft con-

straints;

3. Compilation of the QAOA framework to the Ket Language;

4. Study of the state-of-the-art in Timetabling heuristics;

5. Comparison between QAOA and other heuristics;

6. Scientific paper writing;

7. Thesis writing.
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1.7 Contributions

We developed a new quantum heuristic for the school timetabling problem, with

our first results published in (PIRES; SANTIAGO; MARCHI, 2021). All code used in our

work can be found in a repository on GitLab (PIRES, 2021). Our implementations also

provided a benchmark for the Ket Bitwise Simulator.

1.8 Overview

This work is structured as follows: chapter 2 introduces the school timetabling

problem. Chapter 3 describes the QAOA algorithm and its variation, the Quantum

Alternating Operator Ansatz. Chapter 4 describes our proposed heuristic. Chapter 5

shows our results. Finally, the concluding remarks are in Chapter 6.



18

2 SCHOOL TIMETABLING PROBLEM

The timetabling problem consists in scheduling a sequence of events in a pre-

fixed period of time satisfying a set of constraints of various types. This problem varies

according to the institution involved and the type of constraints required by the timetable.

There are three main classes of problems (SCHAERF, 1999):

• School timetabling: periodic scheduling of lessons for classes and teachers of a

school to a limited number of available time periods, avoiding time conflicts;

• Course timetabling: periodic scheduling of lessons from a set of university courses

to a number of fixed time periods and rooms, minimizing the overlaps of lessons

from courses having the same students;

• Examining timetabling: scheduling of exams of university courses, avoiding over-

laps of exams having common students, locally spreading students as much as

possible. The Examining timetabling differentiates itself from the Course timetabling

because its scheduling is not periodic, and is restricted to a single day or two of

the month instead of the whole week (AZIZ; AIZAM, 2018).

In this work we chose to focus on school timetabling.

2.1 Terminology

The terminology used to address the School Timetabling Problem is not con-

sistent across different studies. In order to avoid misconceptions, we define the terms

used in this work as follows:

• A class refers to a group of students that are taught a particular subject simulta-

neously.

• An event group is a set of events that share some characteristic. For example, all

the lessons given by a specific teacher.

• A lesson refers to a particular subject being taught to a class by a teacher. A

lesson is comprised of a class, teacher and a room which must be scheduled in

a time period. In some cases a lesson may consist of only a class and a teacher.

Also referred as an event.

• A time group is a set of time periods and it usually refers to a specific weekday.

• A time period is a timetable slot in which a lesson can be scheduled.

• A resource refers to any entity involved in a lesson. The standard resources are a

class, teacher and the room in which the lesson is held.
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2.2 Problem Definition

The School Timetabling Problem is defined in terms of the available teachers,

students, number of lessons to be taught by teachers to specific students, and a set

of constraints. Students are usually grouped into classes prior to the timetable con-

struction process. A timetable is constructed by assigning lessons to time periods while

respecting the predefined set of constraints (FONSECA; SANTOS; CARRANO, 2016;

TASSOPOULOS; ILIOPOULOU; BELIGIANNIS, 2020).

Constraints can be one of two types, hard or soft. Hard constraints must be met

in order for the timetable to be possible. A timetable meeting all the hard constraints of a

problem is called a feasible timetable. Hard constraints may be defined to prevent clash

between resources, for example a teacher assigned to two lessons at the same time, or

to specify requirements that must be met for certain lessons, such as the necessity for

double lessons or when a lesson must occur before or after other lesson (PILLAY, N.,

2014).

Soft constraints define the quality of the timetable and can be contradictory. Be-

cause of that it may be impossible to satisfy all of them. A timetable that is feasible and

also has a minimum number of violated soft constraints is said to be optimal (SAVINIEC

et al., 2020). Soft constraints may indicate time preferences of teachers, for example

to group all lessons in the morning period or to have free time after lunch (PILLAY,

N., 2014). Due to differences between each country legislation, the school timetabling

problem differs greatly between particular education systems (POST et al., 2012), thus

the hard and soft constraints also differ drastically from one problem to the next.

2.3 Problem Solvers

The school timetabling problem is known to be NP-complete (EVEN; ITAI; SHAMIR,

1976). The difficulty of the problem arises from simple realistic conditions, such as a

wide subject choice for students or the requirement for two lessons to be taught at con-

secutive time periods (COOPER; KINGSTON, 1996; EIKELDER; WILLEMEN, 2001).

On account of its difficulty, many algorithms have been used to tackle the problem.

Existing algorithms can be classified into one or more of six types (TAN et al., 2021):

• Mathematical optimization algorithms: Algorithms such as Integer Program-

ming and Constraint Programming belong to this class. Integer Programming

assumes the objective function and the constraints are linear, while Constraint

Programming accepts some non-linearity, and they restrict some or all of the prob-

lem variables into integer values. They represent the problem as a model in which

a respective solver can find the optimal solution (FONSECA, G. H. et al., 2017;

TASSOPOULOS; ILIOPOULOU; BELIGIANNIS, 2020).
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• Meta-heuristic algorithms: This class is composed of very general purpose

problem-solvers designed to find an acceptable (generally feasible) solution in

a reasonable amount of computational time, although they do not ensure op-

timality. Their design considers exploration and exploitation approaches. They

can be further divided in Population-based algorithms and Single solution-based

algorithms (DUTTA; SIL; DUTTA, 2020).

• Graph coloring algorithms: Algorithms that models the timetabling problem

using graph theory to represent the problem variables (BUDIONO; WONG, 2012).

• Matheuristics: This approach combine the use of heuristics with the mathemati-

cal optimisation algorithms (SAVINIEC et al., 2020).

• Hyper-heuristic: This class uses a set of heuristics and a selection method to

automate the selection of which heuristic should be applied (AHMED; ÖZCAN;

KHEIRI, 2015).

• Hybrid: All solvers which combine the strengths of several (two or more) meta-

heuristic algorithms in a unified framework are classified as Hybrid solvers (TAS-

SOPOULOS; BELIGIANNIS, 2012; FONSECA, G. H. G. da et al., 2016).

The survey by (TAN et al., 2021) observes that Integer Programming based meth-

ods are the current state-of-the-art for three different datasets of School Timetabling

Problem. It also shows that meta-heuristics are currently the most popular class of

solvers used by researchers, followed by mathematical optimization methods, hyper-

heuristics and then matheuristics. The majority of the meta-heuristics are non-population

based methods, as one drawback of using the population-based approach is the long

execution time in finding a good quality solution.

2.4 Problem Formulation

We formalize our school timetabling problem as the optimization of a cost func-

tion C defined as:

C =
∑

c

Cc (1)

where Cc is the cost of each individual constraint defined by the problem instance. We

use the XML archive for High School Timetabling (XHSTT) (POST et al., 2012) as the

standard data format in our work. We will describe briefly the necessary properties of

the format to understand the cost function.

An instance of XHSTT is composed of four entities, namely times, resources,

events and constraints. Events and times can also be part of an event group or a time

group.



Chapter 2. School Timetabling Problem 21

An event is a meeting between resources. It has associated with it a set of

event resources, that are required for the event to happen. Event resources may be

preassigned to the event, or they may be left open for a solver to assign, subject to

constraints. For example, the event “Math Lesson” requires a math teacher and a class

of students. The teacher and class may be defined in advance or the solver may assign

them, ensuring that every class has the correct number of lessons according to the

constraints of the instance.

Each constraint is of a specific type, e.g. avoid clashes or assign time. The type

of the constraint defines its points of application and its deviations. A point of application

is an instance entity, such as a resource or an event, in which the constraint is applied

and differs for each type of constraint. Each constraint requires at least one point of

application. A deviation is a non-negative integer that indicates how and to what degree

a constraint is broken. The deviation is later converted into the cost of the constraint

following a cost function of the instance.

2.4.1 Objective Function

Each constraint penalizes timetables for its events, event groups, or resources

that do not meet certain characteristics. The penalty of a constraint is called a deviation

and is converted into a cost. The cost of a constraint is calculated by the following

formula:

Cc = wc ∗ f (d), (2)

where wc ∈N is the weight of the constraint and f (d) is a cost function. The cost function

is applied to the deviation d , producing an integer which is multiplied by the weight to

obtain the cost. The cost function f can have one of three behaviours:

• Linear: The deviation, unchanged

• Quadratic: The square of the deviation

• Step: 1 if the deviation is non-zero, and 0 otherwise

Each constraint has the boolean value “Required” associated with it. If Required

is true, the constraint is a hard constraint and the cost is added to the infeasibility value

(hard cost) of the solution. If Required is false, the constraint is a soft constraint and

the cost is added to the objective value (soft cost) of the solution. The hard cost always

takes priority over the soft cost, as violations of hard constraints are serious defects for

a solution. Solvers aim to find solutions with very few hard constraint violations, and

although the existence of such solutions is not guaranteed, realistic instances should

have them.
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3 QAOA ALGORITHM

This chapter is divided in two main sections. The first sections explains the

necessary concepts of quantum computation to understand the QAOA algorithm. The

second section explains the inner workings of the Quantum Approximate Optimization

Algorithm and its variation, the Quantum Alternating Operator Ansatz.

3.1 Quantum Computation

Quantum computation is a new computing paradigm that has become more

proeminent in the last few years. Its most important characteristics arise from its use of

quantum mechanics properties to perform computations.

3.1.1 Qubits

Associated with every quantum system there is a complex vector space with

inner product (Hilbert Space) called state space of the system. The system is completely

described by its state vector, which is a unit vector from the state space. The dimension

of Hilbert Space is determined by the associated physical system. The qubit is a unit

vector from a bidimensional Hilbert space. We define the computational basis vectors

of a qubit as the vectors

|0〉=

(

1

0

)

, |1〉=

(

0

1

)

.

Any qubit can be written as a linear combination of |0〉 and |1〉. Qubits in the

form |ψ〉 = α |0〉+β |1〉 , α,β ∈ C, are said to be in superposition when α 6= 0 and β 6= 0.

The coefficients α and β are called the amplitude of the basis state and are directly

correlated with the probability of measuring the state.

In order to extract classical information from quantum computation it is neces-

sary to measure the qubit. The measurement operation collapses the qubit to one of

the vectors of the computational basis, and returns a classical bit with value 0 or 1 de-

pending on the collapsed state. A collapsed state will always return the same outcome

when measured again and any information about its previous superposition is lost.

For a given qubit |ψ〉=α |0〉+β |1〉, the probability of measuring |0〉 is |α|2 and |1〉
is |β|2. As qubits are unit vectors, it follows that ‖|ψ〉‖= 1. Therefore, |α|2 + |β|2 = 1. This

is called the normalization condition, and it ensures that the sum of all measurement

probabilities of the qubit states equals to 1.

3.1.2 Operators and Quantum Gates

The quantum circuit model describes quantum computation as the application

of discrete unitary operators, called quantum gates, that act on the state space of the
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qubit system. Their behaviour is described by an unitary matrix. A matrix U is unitary

if U†U = UU† = I, where U† is the adjoint and I is the identity matrix. The adjoint is

the transpost and complex conjugated of a matrix. A unitary matrix has the property

to preserve the inner product of the vector that it operates, which guarantees that the

normalization condition of the qubit is preserved after the application of the quantum

gate. This is the only condition for a quantum gate, and any unitary matrix represents a

valid quantum operator.

In quantum mechanics, the evolution of a quantum system in continuous time

can be described by a Hermitian operator called the Hamiltonian of the system. An

operator A is Hermitian, or self-adjoint, if A = A†. A Hermitian operator also has a matrix

representation. Given the Hamiltonian H of a system, we can make a unitary operator

which represents the same evolution following the exponentiation

U = eiH ,

where i is the imaginary unit. More importantly, we can show that from a Hermitian

operator, any unitary operator can be realized in this form (NIELSEN; CHUANG, 2010).

This result shows a correspondence between the continuos-time description of evolution

using a Hamiltonian, and the discrete-time description using quantum gates.

The act of a quantum gate on a qubit is often referred as a rotation. This name

comes from the fact that any quantum state can be described as

|ψ〉= cos
θ

2
|0〉+eiϕsin

θ

2
|1〉 ,

where ϕ ∈ [0,2π] describes the relative phase and θ ∈ [0,π] defines the probability of

measuring |0〉 and |1〉. Following this description, every quantum state can be illus-

trated on the surface of a 3-dimensional unitary sphere called Bloch’s Sphere, and

quantum gates can be interpreted as rotations of the state vector aroud an axis of the

sphere (NIELSEN; CHUANG, 2010).

Some of the most known operators are the Pauli matrices X , Y and Z , described

in Figure 1. Each matrix acts as a rotation of 180◦ around an axis of the Bloch’s Sphere.

Some of these rotations have well-known behaviours. Most notably, the X operator

swaps the amplitudes of the qubit, and when it acts on the computational basis it

changes the qubit state from |0〉 to |1〉 and vice-versa. The Z operator adds a relative

phase of -1 to the qubit, which changes the state |1〉 to – |1〉 while leaving |0〉 unchanged.

The operators X and Z are sometimes called, respectively, the bit-flip operator and the

phase-flip operator.

The relative phase of a qubit is an important concept that differenciates states

within the computational basis. We say two states are said to differ by a relative phase

in some basis if each of the amplitudes in that basis is related by a factor eiϕ, ϕ ∈ R.

For example, consider the states |0〉+|1〉p
2

and |0〉–|1〉p
2

. For both states the magnitude of



Chapter 3. QAOA Algorithm 24

X =
[

0 1
1 0

]

Y =
[

0 –i

i 0

]

Z =
[

1 0
0 –1

]

Figure 1 – The Pauli matrices.

the amplitudes is the same, 1p
2

, however the amplitude of |1〉 differ in sign. In this case,

each state gives rise to physically observable differences in measurement statistics,

and it is not possible to regard them as physically equivalent

If both amplitudes of the state differs by the same phase we say the state has a

global phase. Global phases do not change the statistics of measurement predicted for

the state, for example |ψ〉 = 5i |ψ〉. Thus we may ignore global phase factors as being

irrelevant to the observed properties of the physical system.

3.2 QAOA

The QAOA is a quantum gate model algorithm capable of finding an approximate

solution for constraint satisfaction problems (CHOI; KIM, 2019). QAOA begins with

mapping the objective function to an Hamiltonian to bring the problem into Hilbert space.

This problem Hamiltonian works together with a mixing Hamiltonian, which transfers

probability amplitude between different basis states encoding problem solutions.

The problem and mixing Hamiltonians are then made into unitary operators

parameterized by the real valued angles γ and β. Both operators are then applied

alternately p times each to a suitable initial quantum state. A depth-p algorithm has 2p

parameters (HADFIELD, 2018).

In the end, the resulting quantum state is measured and the expectation value

of the problem Hamiltonian is estimated. We use an iterative process which obtains the

parameters that optimize the expectation value of the problem Hamiltonian to reach the

solution. The process for finding optimal parameters uses classical optimization meth-

ods. For this reason, QAOA is in the category of hybrid quantum-classical algorithms.

In its first publication by (FARHI; GOLDSTONE; GUTMANN, 2014) the QAOA

was an approximate optimization algorithm, whose behaviour was based in the alter-

nated application of a Hamiltonian based in a cost function and a Mixing Hamiltonian.

Later, this framework was expanded by (HADFIELD; WANG; O’GORMAN, et al., 2019)

so that it would allow families of more general operators. This extension of Quantum

Approximate Optimization Algorithm into the Quantum Alternating Operator Ansatz is

very significant because it enables the use of QAOA to a wide variety of approximate

optimization, exact optimization, and sampling problems. The acronym was reworked

intentionally so that it continues to apply to both prior and future work with the algo-

rithm and serves the purpose to remove the confusion of using QAOA in contexts
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besides approximate optimization and to remove the redundancy of the phrase “QAOA

Algorithm”.

3.2.1 Quantum Approximate Optimization Algorithm

Suppose an objective function f (z) =
∑m

k=1 fk (z) to be maximized, where z =

z1z2 . . .zn is a n-bit string and fk (z) = 1 if z satisfies clause k and 0 otherwise. We define

the problem Hamiltonian C that acts on a quantum state |z〉 as

C |z〉=
m
∑

k=1

Ck |z〉= f (z) |z〉 . (3)

From Equation 3, it follows that C has eigenvectors |z〉 and eingenvalues
∑m

k=1 Ck (z) =

f (z). For an arbitrary state |ψ〉 we can calculate the expectation value of C, that is

〈C〉= 〈ψ|C |ψ〉. If |ψ〉= |z〉, 〈C〉= 〈z|C |z〉= f (z). Therefore, finding |z〉 that can maximize

f (z) corresponds to finding a state |ψ〉 that maximizes the expectation value 〈C〉 (WANG;

ABDULLAH, 2018).

QAOA works by rotating an initial state |s〉 to make it closer to a state |z ′〉 that

maximizes the objective function. The initial state is selected as an equal superposition

of all possible solutions

|s〉=
1

p
2n

∑

x∈{0,1}n

|x〉 , (4)

and we define two types of unitary rotation matrices UC(γ) and UB(β).

The operator UC(γ) is parameterized by the angle γ and is derived from the

problem Hamiltonian C from Equation 3.

UC(γ) = e–iγC =
m
∏

k=1

e–iγCk . (5)

This means that for a certain component |z〉, a phase e–iγ will be added in front of |z〉
for each satisfied condition Ck (WANG; ABDULLAH, 2018).

The rotation UC(γ) alone does not change the probability of obtaining basis

states encoding different problem solutions. In order to achieve that we define the

mixing Hamiltonian B as

B =
n
∑

j=1

Xj , (6)

where Xj is the Pauli operator X applied in the j-th qubit. The rotation operator UB(β),

which depends on angle β is then defined as

UB(β) = e–iβB =
n
∏

j=1

e–iβXj (7)
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|s1〉

UC(γ1) UB(β1)

. . .

UC(γp) UB(βp)... . . . ...

|sn〉 . . .

Figure 2 – QAOA circuit

It is not guaranteed that a single use of each rotation is enough to obtain an state

close to |z ′〉. To work through that, both UC(γ) and UB(β) are applied multiple times,

with different β and γ each time. The final circuit is illustrated in Figure 2. Suppose we

apply p times each operator, we obtain a new state defined as:

|γ,β〉= UB(βp)UC(γp) . . .UB(β1)UC(γ1) |s〉 , (8)

which depends on the angles γ and β and where γ = (γ1, . . . ,γp) and β = (β1, . . . ,βp). It

is not easy to determine γ and β in advance and there are many possible ways to find

such optimal angle as this corresponds to a 2p-dimensional optimization.

The step-by-step of QAOA worflow is as follows:

1. Begin with the initial state |ψ〉= |s〉.

2. (Classical computer) Initialize 2p parameters β and γ.

3. (Quantum computer) Construct |γ,β〉 using UB(βp)UC(γp) . . .UB(β1)UC(γ1) |s〉 with

angles determined in the previous step.

4. (Quantum computer) Measure |γ,β〉 in computational basis set and obtain a value

|z〉.

5. Use the operator C =
∑m

k=1 Ck (z) to calculate f (z).

6. Repeat step 1 to 4 to obtain a distribution of states |z〉. Each |z〉 corresponds to a

f (z) which results in a distribution of f (z) with largest value f (z ′). The expectation

value of C, 〈γ,β|C |γ,β〉, is obtained by measuring the average of the distribution.

We only output the f (z ′) and the state |z ′〉 as the result of applying 2p parameters

β and γ.

7. Select a new set of 2p parameters β and γ and repeat step 3 to 6 as part of a

2p-parameter function optimization where only the function evaluation involves a

quantum system. In the end, obtain a distribution of f (z ′) and choose the largest

one as the final output.
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3.2.2 Quantum Alternating Operator Ansatz

The algorithm developed by (HADFIELD; WANG; O’GORMAN, et al., 2019) ex-

tends the idea of (FARHI; GOLDSTONE; GUTMANN, 2014) encompassing a more

general class of quantum states that can be algorithmicaly accessible. The key to this

extension is about to enable the alternation using partial mixing operators which allows

the algorithm to construct families of mixing operators that cannot be expressed as

e–iβB for a fixed mixing Hamiltonian B. These partial mixing operators also make the

implementable mixers more efficient than was possible in the original framework. For

example, when the optimization is over solutions that must satisfy hard constraints, the

partial mixers can restrict the search to the feasible space, instead of the full configura-

tion space of the problem.

The Quantum Alternating Operator Ansatz can be applied to problems beyond

previously possible, such as the NP-Optimization problems Traveling Salesperson

Problem, Single-Machine and Multi-Processor Scheduling and Minimum Graph Col-

oring (HADFIELD; WANG; RIEFFEL, et al., 2017; RUAN et al., 2020).

An instance of an optimization problem is a pair (F , f ), where F is the domain and

f : F →R is the objective function to be optimized. The domain is generaly expressed

as a possible subset of a larger configuration space, specified by a set of problem

conditions. In order to be implemented in current quantum hardware, each configuration

space must be encoded as a subspace of a Hilbert space of a multiqubit system, with

the domain corresponding to a feasible subspace of the configuration space.

Let F be the Hilbert space of dimension |F | which the standard basis is {|x〉 : x ∈
F }. A QAOA circuit is characterized by two families of operators parameterized by the

real-valued angles β and γ that act in F :

• A family of phase separation operators UP(γ) which depends of the objective

function f ;

• A family of mixing operators UM (β) which depends of the domain and its structure.

Specifically, a QAOAp circuit consists of p alternated applications of the operators from

these two families:

Qp(β,γ) = UM (βp)UP(γp) . . .UM (β1)UP(γ1). (9)

The quantum alternating operator ansatz consists of the states representable as

the application of this circuit on the initial state |s〉:

|β,γ〉= Qp(β,γ) |s〉 . (10)
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3.2.2.1 QAOA Mapping

For a given optimization problem, the QAOA mapping of a problem consists of an

initial state, a family of phase separation operators and a family of mixing operators. The

circuit of the original quantum approximate optimization algorithm fits in this paradigm,

with unitaries in the form e–iγC as the phase separation operator and e–iβB as the

mixing operator.

A suitable QAOA mapping for the problem must follow some design criteria (HAD-

FIELD; WANG; O’GORMAN, et al., 2019) that restricts state evolution to the feasible

subspace. This restriction improves the performance of the algorithm, since it does not

need to search the entire configuration space for a solution. The QAOA mapping can

be used to compile directly to a gate-level quantum circuit, once a problem encoding

is selected. Problem encoding defines the translation of the problem parameters into

qubits. Different problem encodings may lead to different gate and qubit costs. Given

a domain, an encoding of a configuration space, a phase separator and a mixer, there

are many compilations of the QAOA to quantum circuits.

It is required that the initial state |s〉 to be trivial to implement, which means we

must be able to create it with a quantum circuit with constant depth (by the size of the

problem) from the state |0 . . .0〉. The initial state can be a unique possible solution, com-

monly implemented by a 1-depth circuit made by single bit-flip operations. In such case

the phase operator applies only a global phase to the initial state, and it is interesting to

consider that the algorithm begins with a mixing operator UM (β0) applied on the initial

state as a first step.

These criteria can be relaxed to a logarithmic depth if necessary. However, it

should not be relaxed too much, otherwise it would increase the complexity of the

algorithm as a whole. Algorithms with more complex initial states should be considered

hybrid algorithms, with an initialization part and a QAOA part (HADFIELD; WANG;

O’GORMAN, et al., 2019).

We require that the family of phase separation operators to be diagonal in relation

to the computational basis. In almost every case, we assume

UP(γ) = e–iγHf , (11)

where Hf is the Hamiltonian of the objective function f to be optimized.

The mixing operators UM (β) must follow two criteria, they must preserve the fea-

sible space and they must provide transitions between all pair of states corresponding

to feasible points. That means, for every instance of the parameter β, the resulting uni-

tary takes feasible states to feasible states and for each feasible pair of computational

states x ,y ∈F there is a parameter of value β∗ and some positive integer r such that it

is possible to connect states |x〉 and |y〉 by applying the mixer UM (β∗) r times.
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4 METHOD

We propose to tackle the school timetabling problem as formalized in Chapter 2

with a Two-stage optimization algorithm using the QAOA quantum circuit presented in

Chapter 3. A Two-stage optimization algorithm attempts to minimize the soft-constraints

violations only after a feasible solution, i.e. a solution that follows all hard-constraints,

has been reached. This method differs from an One-stage optimization algorithm, where

both hard and soft constraints are considered simultaneously during the optimization

process (LEWIS; PAECHTER; ROSSI-DORIA, 2007).

The QAOA algorithm is a hybrid quantum-classical algorithm that uses a pa-

rameterized quantum circuit with a classical optimization process over the quantum

gates parameters. The depth of the resulting quantum circuit grows linearly with a

parameter p that regulates the number of applications of the quantum circuit (FARHI;

GOLDSTONE; GUTMANN, 2014), which makes QAOA a strong candidate for running

in NISQ machines.

Our Two-stage optimization uses the QAOA circuit for solving the Minimum Graph

Coloring problem as defined by Hadfield (HADFIELD, 2018) to address the hard con-

straints and later addressing the soft constraints of the timetabling problem using the

classic optimization process of QAOA. It is important to notice that although our heuris-

tic has two stages, defined by its quantum part and its classical part, we used only the

QAOA algorithm. Because of that, the transition between both stages does not repre-

sent a middle point of our heuristic and during the classical optimization loop it may

come back to the first stage, following the behaviour of QAOA. We detail both stages in

the following sections.

4.1 First Stage - Hard Constraints

We address the hard constraints of the school timetabling problem by first re-

ducing it to a graph coloring problem. Graph coloring is a general model for conflict

resolution where each node of a graph receives a color and two adjacent nodes cannot

have the same color. In the context of school timetabling the number of colors used is

equal to the number of time periods necessary to schedule all classes without clashing

of resources.

After extracting all the information about the resources and events of the timetabling

instance, we create the conflict graph G = (N,E) (see Alg. 1 line 1), where N is the set

of all lessons and E = {(i , j) | i , j ∈ N, i cannot be scheduled at the same time as j}, and

|N | = n, |E | = m. Two lessons cannot be scheduled together if a constraint prevents them

from doing so. For example, a constraint may require that a resource, e.g. a teacher, not

to be utilized by more than one lesson at the same time. The conflict graph summarizes

all the hard-constraints of the problem.
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Algorithm 1: QAOA for School Timetabling Problem
Input :XHSTT archive tt – instance, Number of time periods k , QAOA parameter p

1 G ← createConflictGraph(tt – instance)
// QAOA algorithm preparation

2 initialState ← colorGraph(G,k )
3 β[1..p], γ[1..p] ← INTERP()
// Classic Optimization Process over the β and γ parameter vectors

4 while don’t stop do

5 finalResult ←minimize(QAOACircuitEvaluation(β,γ, initialState))

6 return finalResult

When the graph is ready, we start to prepare the QAOA algorithm. We first

prepare the initial state for QAOA (line 2). We color the conflict graph with at most k

colors, where k is the number of available time periods for the lessons to be assigned.

The available time periods were extracted in advance accordingly with the instance

description. The initial state must be a valid coloring, otherwise the QAOA will search

for solutions outside feasible space. For the QAOA to guarantee that the final solution

is feasible the coloring of the initial state must preserve all hard-constraints.

We also initialize the parameter vectors γ and β (line 3). Random initialization,

multistart optimization (SHAYDULIN; SAFRO; LARSON, 2019), or the use of heuristics

are a few examples of strategies used to initialize them. For our parameter setting

strategy, we adapted the INTERP heuristic strategy described in (ZHOU et al., 2020)

which uses linear interpolation to produce a good initial point for optimizing the QAOA

as one iteratively increases its depth.

After defining the initial state and the parameter vectors γ and β, the QAOA

circuit is created (line 5, calling Algorithm 2). The total cost of the quantum algorithm is

O(p(k2m +nk )) basic quantum gates, where p is the QAOA parameter. Our implemen-

tation uses nk +n qubits. This value differs from the original circuit (HADFIELD, 2018)

because we increased the number of ancillas qubits in order to reduce the circuit depth.

Inside Algorithm 2, after the measurement (line 4), the final state will collapse

to a vector |z〉 where z is a valid graph coloring. We then begin the second phase by

passing |z〉 to the objective function we want to optimize (Alg 2, line 5).

4.2 Second Stage - Soft Constraints

Our solution addresses the soft constraints using the classical optimization loop

of the QAOA algorithm, shown in Algorithm 1 (line 4-5). Usually, the phase separator

UP encodes the function to be optimized, which in the case of Minimum Graph Coloring,

is the function that counts how many colors were used in the coloring. However, we

changed the objective function so that it represents our soft constraints while keeping

the same phase separator. This alteration changes significantly the inner working of
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Algorithm 2: QAOA Quantum Circuit Evaluation
Input :parameter vector β, parameter vector γ, graph coloring initialState

1 results ← []
2 QAOACircuit ← constructQuantumCircuit(β,γ, initialState)
3 for j ← 1 to 10000 do

4 measurement ← (measure(QAOACircuit))
// ObjectiveFunction can be seen in Equation (12)

5 results.append(ObjectiveFunction(measurement))

6 expectedValue ← results.average()
7 return expectedValue

QAOA, because the quantum circuit normally looks for an answer that already optimizes

the objective function.

Even though the objective function is not encoded by the phase separation

operator, the solutions found by the quantum circuit are still valid solutions, since the

timetabling problem can be reduced to the graph coloring problem. Therefore, while the

QAOA circuit searches for a solution that uses the least amount of colors, keeping the

solution within feasible space, the classical optimization loop guides the parameters

so that the solution fails the least amount of soft constraints. To compensate for this

change, we expect that longer optimization runs will be needed.

Our new objective function that counts the number of soft constraints violations

receives as input a valid coloring and is described as the weighted sum:
∑

c∈C

wc f (c) (12)

where C is the set of all soft-constraints and wc is the weight associated with the

constraint described in the problem instance. If the constraint was violated then f(c) is

1, and 0 otherwise.

The function evaluation for our 2p-parameter function optimization is described

inside Algorithm 2. After the measurement of the QAOA quantum circuit (line 4), the

result of the measurement is passed to the objective function (line 5). This process

must be repeated in order to create a state distribution and the expected value to be

estimated (line 6). The expected value is then returned to the classical optimization

process (line 7). The expected value represents the average result returned by QAOA.

4.3 Classical Optimization Routine

The optimization loop of QAOA follows the behaviour of the chosen classical

optimization algorithm, which dictates aspects such as convergence guarantee and the

stop criteria.

We use the algorithms COBYLA (POWELL, 1994) and CMA-ES (HANSEN,

2007) as the optimization routines to work with QAOA. Hybrid quantum-classical al-



Chapter 4. Method 32

gorithms work well with a variety of classical optimization algorithms. The most com-

mom approachs are black-box gradient-free (GUERRESCHI; MATSUURA, 2019; SHAY-

DULIN; ALEXEEV, 2019; VIKSTÅL et al., 2020; UTKARSH; BEHERA; PANIGRAHI,

2020), or gradient-based (ZHOU et al., 2020) optimizations. Other strategies, such as

evolutionary strategies (ROCH et al., 2020), reinforcement learning (KHAIRY et al.,

2020), and machine learning (ALAM; ASH-SAKI; GHOSH, 2020) have also been used

with QAOA. A recent work (FERNÁNDEZ-PENDÁS et al., 2021) attempts an exhaustive

comparison between different optimization strategies with QAOA and concluded that

COBYLA is capable of finding good quality solutions while still being faster than other

tested approaches. We chose CMA-ES as an alternative to COBYLA to ascertain the

behaviour of QAOA with other optimization routines.
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5 RESULTS

We simulated our quantum circuits with the Parallel-Bitwise-Simulator for the Ket

Quantum Programming Language (DA ROSA; DE SANTIAGO, 2021). We used an Intel

Xeon E5-2640 with 10 nodes and hyperthreading, 128Gb of RAM and an NVIDIA Tesla

K40c GPU.

We have performed experiments by using the XHSTT Dataset Denmark-SmallSchool

instance described in Table 1. The instance asks to schedule a total of 25 lessons in

4 time periods. The school has a total of 74 students and 9 teachers. Each lesson is

composed of a subset of students and a teacher defined in advance. There are three

constraints in this instance:

• AssignTimeConstraint: hard constraint, demands that all lessons must be as-

signed to a time period.

• AvoidClashesConstraint: hard constraint, ensures that there is no clashes be-

tween resources.

• PreferTimesConstraint: soft constraint, indicates preferable time periods for spe-

cific lessons. There are only 4 lessons which have a preferable time period to be

scheduled.

All constraints have a weight of 1 associated with it.

Table 1 – XHSTT Dataset Denmark-SmallSchool

Assets Times Teachers Rooms Students Classes # events Total duration

Values 4 9 - 74 - 25 250

The resulting conflict graph with each lesson is shown in Figure 3. We used a

coloring heuristic to find a suitable 4-coloration for the graph to use as initial state. Our

initial state scored a 4 in the objective function, which means it broke all soft-constraints.

This instance required a total amount of 125 qubits to simulate.

We evaluated our method for paramater p assuming values 1,2,4 and 8. We

made a total of 20 runs for each value using COBYLA as the optimization algorithm and

only a single run using CMA-ES. Each run used the same initial state. As a parameter

setting strategy we adapted the INTERP heuristic described in (ZHOU et al., 2020), so

instead of generating the next p+1 parameters after a local optima was found, we used

linear interpolation to generate good initial values for the next 2p parameters

Because of the restricted size of RAM in our GPU card, we limited the states

representable by our simulator to only states with a probability greater than 10–6, be-

cause these states are more likely to be chosen by a limited number of measurements.
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6 CONCLUSION

This work proposes the use of the Quantum Approximate Optimization Algorithm

as a heuristic to solve the School Timetabling Problem. We developed a Two-stage op-

timization process, where on the first stage the QAOA quantum circuit for the Minimum

Graph Coloring problem addresses the hard constraints of the timetable and on the

second stage the classical optimization loop of QAOA addresses the soft constraints.

We consider this research and its findings a seminal work in using QAOA as a heuristic

for the timetabling problem.

We tested our method using three different instances. The instance Denmark-

Smallschool from XHSTT Dataset and two derived instances, Den-Aux and Den-5. We

simulated our circuits in a noiseless environment using the Parallel Bitwise Simulator

for the Ket Quantum Programming Language(DA ROSA; DE SANTIAGO, 2021). Our

instances required up to 189 qubits to simulate.

Our heuristic was unable to optimize the original Denmark-Smallschool instance

due to the QAOA mixer being unable to reach different solutions. The initial state of the

instance started with a 4-coloring and coincidentally this is the chromatic number of

the conflict graph. As consequence, the QAOA circuit could not search new solutions

as it was starting from an optimal coloring. We believe this behaviour may indicate that

our heuristic will also have difficulties in optimizing hard instances of the Timetabling

Problem.

We then created two derived instances to further analyze our heuristic. The

instance Den-Aux attempted to solve the original timetabling problem by adding two

auxiliary nodes to the conflict graph and the instance Den-5 relaxed the original problem

to allow a fifth time period, and as consequence a fifth color, to the conflict graph.

Our heuristic was not able to find better results than the initial state for the

instance Den-Aux, as our attempt to use auxiliary nodes was not able to overcome the

limitations of our heuristic. However, for the relaxed instance of Den-5 our heuristic was

able to converge to an optimized result with parameter p = 2. This could indicate the

potential of using this heuristic in near-term devices as the depth needed by QAOA was

low.

6.1 Future Works

For future works our heuristic may be improved by testing the following changes:

• The heuristic can be changed from a Two-Stage optimization to an One-Stage

optimization if the objective function of the soft constraints can be directly made

into a phase Hamiltonian. This can help to reduce the number of runs necessary

for the optimization algorithm to converge.
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• The impact that the initial state has on the search for a solution can be analyzed

and a strategy for choosing a suitable initial state could be devised.

• As an alternative to the graph-coloring method, the QAOA could be used to

solve the timetabling problem modeled as a constraint-satisfaction problem. This

alternative could be easier to simulate because a n-bit string that composes the

configuration space of this problem could be mapped to n qubits, while for the

graph coloring the number of qubits used scale faster, since it depends on the

product of the number of events and the number of time periods.
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