
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Evandro Chagas Ribeiro da Rosa

Ket Quantum Programming

Florianópolis

2021

Evandro Chagas Ribeiro da Rosa

Ket Quantum Programming

Dissertation submitted to the Programa de Pós-Graduação
em Ciência da Computação of the Universidade Fed-
eral de Santa Catarina to obtain the title of Master in
Computer Science.
Supervisor: Prof. Rafael de Santiago, Dr.

Florianópolis

2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Ribeiro da Rosa, Evandro Chagas
 Ket Quantum Programming / Evandro Chagas Ribeiro da
Rosa ; orientador, Rafael de Santiago, 2021.
 109 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2021.

 Inclui referências.

 1. Ciência da Computação. 2. Quantum Computation. 3.
Quantum Programming. 4. Quantum Simulation. I. de
Santiago, Rafael. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Ciência da Computação.
III. Título.

Evandro Chagas Ribeiro da Rosa

Ket Quantum Programming

The present work at master’s level was evaluated and approved by an examining board

composed of the following members:

Prof. Rafael de Santiago, Dr.

Universidade Federal de Santa Catarina

Profª Juliana Kaizer Vizzotto, Drª

Universidade Federal de Santa Maria

Prof. Samuel da Silva Feitosa, Dr.

Instituto Federal de Santa Catarina

Prof. Ricardo Azambuja Silveira, Dr.

Universidade Federal de Santa Catarina

We certify that this is the original and final version of the conclusion work that was

considered adequate to obtain the title of Master in Computer Science.

Coordination of the

Graduate Program

Prof. Rafael de Santiago, Dr.

Supervisor

Florianópolis, 2021.

ACKNOWLEDGEMENTS

Agradeço aos meus pais, Maria Joana Chagas e Vanderlei Ribeiro da Rosa, por

sempre me darem suporte e incentivo aos meus estudos. Seu apoio foi fundamental

para que eu pudesse começar e concluir este trabalho.

Agradeço ao meu orientador, Professor Rafael de Santiago, por acreditar no meu

projeto e pela amizade que construímos durante o desenvolvimento deste trabalho.

Agradeço aos integrantes do Grupo de Computação Quântica ± UFSC pela ami-

zade e pelo espaço aberto para que eu pudesse apresentar e melhorar este trabalho.

Agradeço ao Otto Menegasso Pires por testar as ferramentas que desenvolvi

neste trabalho, me ajudando a corrigir problemas e aperfeiçoá-las.

Agradeço aos professores que compuseram a banca de avaliação deste tra-

balho, Juliana Kaizer Vizzotto, Samuel da Silva Feitosa e Ricardo Azambuja Silveira,

pelas valiosas sugestões e contribuições.

Agradeço ao meu amor, Patricia Corrêa Candido, pela companhia durante todos

os dias desta jornada. Te amo.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior- Brasil (CAPES) ± Código de Financiamento 001.

ABSTRACT

Quantum programming languages fill the gap between quantum mechanics and clas-
sical programming constructions to simplify the development of quantum applications.
However, most quantum programming languages only address the inherent quantum
programming constraints without observing the construction restrictions of quantum
computers. Due to decoherence, cloud-based quantum computers must run as fast
as possible, which leads to batch processing, limiting the interaction between classical
and quantum computers. In this work, we present Ket, a Python-embedded quan-
tum programming language for hybrid classical-quantum programming that mitigates
this interaction limitation with a runtime architecture suitable for cloud-based quantum
computers. As the core of our proposed runtime architecture, we have the C++ run-
time library Libket, which features runtime quantum code generation to enable generic
quantum programming with dynamic quantum execution while keeping the quantum
computation as specific as possible. Libket also introduces the future variables to delay
the quantum execution, which Ket used to mitigate the interaction limitation between
classical and quantum computers. Ket, Libket, and Ket Bitwise (quantum computer)
Simulator (KBW) constitute the Ket Quantum Programming framework. With KBW, we
improve over the Bitwise representation, associating the simulation time to the amount
of superposition and entanglement in the quantum system, not the number of qubits.

Keywords: Quantum Computation. Quantum Programming. Quantum Simulation.

RESUMO

As linguagens de programação quântica preenchem a lacuna entre a mecânica quân-
tica e as construções clássicas de programação para simplificar o desenvolvimento de
aplicações quânticas. No entanto, a maioria das linguagens de programação quântica
abordam apenas as restrições intrínsecas à programação quântica sem observar as
restrições advindas da construção dos computadores quânticos. Devido à decoerência,
computadores quânticos em nuvem devem executar o mais rápido possível, possibi-
litando apenas o processamento em lote que limita a interação entre computadores
clássicos e quânticos. Neste trabalho, apresentamos o Ket, uma linguagem de progra-
mação quântica embarcada em Python para programação híbrida clássica-quântica
que mitiga essa limitação de interação com uma arquitetura de tempo de execução
adequada para computadores quânticos em nuvem. Como componente central da ar-
quitetura de tempo de execução proposta, apresentamos a biblioteca C++ Libket, que
introduz geração de código de tempo de execução para possibilitar a programação
quântica genérica com execução dinâmica, enquanto mantém a computação quântica
o mais específica possível. O Libket também introduz as variáveis do tipo future para
atrasar a execução quântica. Estas variáveis, por sua vez, são utilizadas pelo Ket para
mitigar a limitação de interação entre computadores clássico e quântico. Ket, Libket e
o Ket Bitwise Simulator (KBW) compõem o framework de programação quântica Ket.
Com o KBW, melhoramos a representação Bitwise, tornando o tempo de simulação
não dependente do número de qubits, mas sim da quantidade de superposição e
emaranhamento do sistema.

Palavras-chave: Computação Quântica. Programação Quântica. Simulação Quântica.

RESUMO EXPANDIDO

Introdução
Motivado pela dificuldade em simular a evolução de sistemas quânticos, Feynman
(1982) conjecturou que um computador que use fenômenos da computação quântica,
tais como superposição e entrelaçamento, poderia resolver alguns problemas mais
rápido do que computadores convencionais. Chamamos tal computador de computa-
dor quântico. Em contraste, chamamos de computadores clássicos aqueles que não
dependem do modelo quântico. Os trabalhos primordiais de Shor (1997) e Grover
(1997) confirmaram essa vantagem dos computadores quânticos sobre os clássicos. O
algoritmo de Shor usa uma sub-rotina quântica para resolver o problema da fatoração
em tempo polinomial. Um problema sem algoritmo polinomial clássico conhecido. O al-
goritmo de Grover, por suas vez, é um algoritmo com tempo O(

√
n) para o problema da

busca em base de dados desordenada, conhecido por ter um limite inferior clássico de
O(n). Hoje, o site Quantum Algorithm Zoo (JORDAN, 2021) lista mais de 60 algoritmos
quânticos para álgebra, simulação, otimização, aprendizado de máquina e mais, com
um ganho de até superpolinomial quando comparado com sua contraparte clássica.

Hoje, estamos na era NISQ (do inglês Noisy Intermediate-Scale Quantum) (PRES-
KILL, 2018), com computadores quânticos com apenas algumas dezenas de qubits e
operando com portas quânticas de baixa fidelidade. Nesta era, o número de qubits e
portas quânticas limitam a execução de diversos algoritmos quânticos. Por exemplo,
até mesmo instâncias pequenas dos algoritmos de Shor e Grover, que caberiam em um
computador quântico de hoje em dia, tem dificuldades com a decoerência, perdendo
as informações dos qubits para o ruído devido a baixa fidelidade das portas quânticas.
No entanto, já passamos o marco da vantagem quântica (ARUTE et al., 2019), onde
um computador quântico consegue superar a performance de um supercomputador
com vantagem exponencial para resolver algum problema (não necessariamente útil)
(PRESKILL, 2012).

A maioria das realizações físicas de computadores quânticos requer condições espe-
cíficas para funcionar corretamente, como por exemplo, deve estar isolado de quase
qualquer ruído, o que eleva o custo de infraestrutura e manutenção a computado-
res quânticos. Essas condições tornam computadores quânticos adequados para a
computação em nuvem, onde empresas e instituições podem usar de computação
quântica sob demanda, cortando custos de infraestrutura e manutenção. Este modelo
é implementado hoje, com provedores de computação quântica em nuvem, tais como a
Amazon Braket e a Microsoft Azure Quantum, representando a maioria dos provedores
de hardware quântico. No entanto, como o tempo de coerência de um computador
quântico em nuvem é normalmente menor que a latência entre este computador com
um computador clássico, execuções quânticas são escalonadas em lote, proibindo a
interação entre computadores durante a computação quântica.

Objetivos
O objetivo geral deste trabalho é desenvolver uma nova linguagem e ambiente para
programação híbrida clássica-quântica, que mitigue a limitação de interação entre
computadores classico e quântico em nuvem. Adicionalmente, a nova linguagem de

programação deve garantir a não violação de aspectos intrínsecos da computação
quântica, tais como o teorema da não-clonagem (WOOTTERS; ZUREK, 1982) e a
computação quântica reversível. Para alcançar esses objetivos, listamos quatro objeti-
vos específicos:

O1 No contexto de programação híbrida clássica-quântica, com um computador quân-
tico processando em lote, o primeiro objetivo específico deste trabalho é desenvol-
ver um modelo para mitigar a limitação de interação entre computadores clássico
e quântico em nuvem;

O2 Com um computador quântico tendo que executar o mais rápido o possível para
diminuir o efeito da decoerência, nosso segundo objetivo específico é desenvolver
um modelo para permitir programação quântica genérica com execução dinâmica
enquanto mantém a computação quântica o mais específica o possível, evitando
enviar para o computador quântico instruções que possam ser executadas no
computador clássico;

O3 Para testar e validar nossa proposta, o terceiro objetivo específico deste trabalho
é implementar a linguagem de programação quântica proposta;

O4 Para compor o ambiente de execução quântica e para validar nossa proposta, o
último objetivo específico deste trabalho é desenvolver um simulador de compu-
tação quântica com a mesma limitação de interação de computadores quânticos
em nuvem.

Metodologia
Nossa pesquisa é qualitativa, uma vez que seu foco é encontrar novas maneiras para
facilitar a programação de aplicações clássica-quântica através da abstração de pecu-
liaridades e restrições da computação quântica para construções mais familiares de
programação clássica. Para alcançar os objetivos deste trabalho, usamos os seguinte
métodos:

• Com o nosso cenário e perguntas de pesquisa definidas, nós buscamos, na litera-
tura, por linguagens de programação quântica que possuíssem uma implementa-
ção. Então, verificamos como essas linguagem se encaixam no nosso cenário e se
elas respondem as questões de pesquisa. No entanto, nenhuma das linguagens
pesquisadas atingiu totalmente os requisitos.

• Para responder nossas questões de pesquisa, primeiramente, definimos uma
arquitetura de tempo de execução e, inspirado em programação concorrente, in-
troduzimos o tipo future para gerenciar medidas quântica e informações clássicas
no computador quântico.

• Para testar nossa proposta, desenvolvemos os componentes essenciais da arqui-
tetura de tempo de execução: a biblioteca de tempo de execução (Libket) e um
simulador quântico (KBW) implementando as mesmas restrições de um computa-
dor quântico em nuvem.

• Primeiramente, nossa intenção era usar o Libket como a biblioteca de tempo de
execução de uma nova linguagem de programação quântica desenvolvida do zero,
totalmente integrada com as variáveis do tipo future. No entanto, decidimos im-
plementar a nova linguagem de programação Ket baseado na linguagem Python,

uma vez que conseguimos integrar as variáveis do tipo future com a maior parte
das construções da linguagem. Desta forma, incluímos todos os benefícios do
Python no Ket, deixando a linguagem compatível com bibliotecas consolidadas
como NumPy (HARRIS et al., 2020) e SciPy (VIRTANEN et al., 2020).

• Com o Ket, nós podemos efetivamente testar e validar nossa proposta, implemen-
tando diversos algoritmos quânticos, como o teletransporte quântico, o algoritmo
de Shor, o algoritmo de Grover, QAOA, e mais. Também implementamos parte do
Microsoft Q# Coding Contest para comparar o Ket com a linguagem Q# (SVORE,
K. et al., 2018). Essas implementações também ajudaram a depurar e melhorar o
Ket, Libket, e o simulador KBW.

• A implementação do simulador quântico (KBW) foi baseada na representação
Bitwise (ROSA; TAKETANI, 2020), com a adição de uma otimização inspirada
pelo simulador Qrack (STRANO et al., 2020). Avaliamos a performance do KBW
em relação a diversos simuladores do estado da arte.

• Desenvolvemos a biblioteca Libket em C++ 17 usando a biblioteca Boost, e para
a interface com Python, nós usamos o software SWIG (BEAZLEY, 1996). Para o
Ket, nós usamos Python com linguagem base, construindo muito das suas funcio-
nalidades em cima da interface produzida pelo SWIG. Implementamos transforma-
ções sobre a árvore de sintaxe abstrata do Python para integrar o tipo future com
as expressões if e while do Python. O Libket se comunica com o KBW através de
uma API REST. Usamos Python com Flask para desenvolver o servidor do KBW
e ANTLR 4 (PARR, 2013) em C++ para criar o analisador sintático e executar o
código quântico. Nós também usamos a biblioteca C++ Boost para implementar a
representação Bitwise no KBW.

Resultados e Discussão
Um produto derivado desta pesquisa é o framework de programação quântica Ket, um
projeto de código aberto composto pela linguagem de programação clássica-quântica
embarcada em Python Ket, a biblioteca C++ de tempo de execução Libket, e o simula-
dor de computação quântica Ket Bitwise Simulator (KBW). Tornamos todos os código
fonte disponivel em https://gitlab.com/quantum-ket, incluindo documentação em
https://quantum-ket.gitlab.io. A linguagem e o simulador estão em uso no Grupo
de Computação Quântica da Universidade Federal de Santa Catarina, e já há trabalhos
publicados usando o framework.

Nossa pesquisa também deu suporte à pesquisa científica de Pires et al. (2021). A
qual usa o algoritmo QAOA para encontrar uma solução aproximada para o problema
da alocação de horários (school timetabling problem) através de uma redução para
o problema de coloração de grafos. Este trabalho implementa o algoritmo usando a
linguagem de programação Ket, e usa o Simulador KBW para executar um experimento
usando 42 qubits. Pires et al. (2021) tem um artigo intitulado “Two Stage Quantum

Optimization for the School Timetabling Problemº publicado na conferência 2021 IEEE
Congress on Evolutionary Computation (CEC).

Este trabalho também gerou uma publicação intitulada “Ket Quantum Programmingº.
aceita para ser publicada na revista científica ACM Journal on Emerging Technologies

in Computing Systems (JETC) na edição especial Design Automation for Quantum
Computing. Nossas principais contribuições técnicas e científicas são:

• O projeto de uma arquitetura de tempo de execução adequada para programação
híbrida clássica-quântica com computadores quânticos em nuvem, implementado
no framework de programação Ket.

• O projeto e a implementação da linguagem de programação clássica-quântica
Ket, a qual consegue gerar códigos clássico e quântico bem separados e introduz
interação dinâmica entre computadores clássicos e quânticos em nuvem, um
problema que não é totalmente abordado pelos trabalhos relacionados.

• O uso de variáveis do tipo futuro como o retorno de medidas quânticas para
atrasar a execução quântica, e a integração de maneira transparente dessas
variáveis com as construções da linguagem de programação, a fim de controlar a
execução quântica.

• A melhoria na representação Bitwise, deixando o tempo de simulação não depen-
dente do número de qubits, mas sim, dependente da quantidade de superposição
e entrelaçamento do sistema.

Considerações Finais
Nós alcançamos os dois primeiros objetivos específicos deste trabalho com a biblioteca
de tempo de execução Libket, e melhoramos esta solução com a linguagem de pro-
gramação Ket. Através da integração das variáveis do tipo future com as construções
if-then-else e while do Python, o Ket consegue mover o fluxo de controle clássico
para o computador quântico de maneira transparente para o programador, mitigando,
assim, a limitação de interação entre computadores quântico e clássico. Essa integra-
ção também permite a programação de código que pode executar tanto no computador
clássico quanto no computador quântico, a depender de onde os valores estão dispo-
níveis. Com a geração de código quântico em tempo de execução possibilitada pelo
Libket, é possível limitar a execução quântica em apenas instruções que não podem
ser resolvidas ou avaliadas pelo computador clássico. Permitindo, deste modo, que o
Ket use qualquer construção do Python para programação clássica-quântica genérica.
A implementação do Ket satisfaz o terceiro objetivo específico deste trabalho, validando
os conceitos da linguagem de programação quântica proposta. O Libket é escrito ape-
nas em C++, independe do Python e do Ket, podendo ser usado na implementação de
outros softwares ou linguagem de programação quântica.

Para implementar o suporte total da linguagem Ket em computadores quânticos, é
necessário que eles suportem fluxo de controle clássico. No entanto, isso ainda não é
possível em computadores NISQ, mas acreditamos que computadores quânticos irão
começar a ter um suporte inicial a fluxo de controle clássico em breve. Eliminando o
fluxo de controle em computadores quânticos, a linguagem Ket e sua arquitetura de
tempo de execução são adequadas para a execução em computadores NISQ.

Nós acreditamos que o Ket é uma maneira conveniente para programadores Python
adentrarem na computação quântica, levando a dinâmica de programação do Python
para a manipulação de bits quânticos. Apesar do Ket implementar manipulação de

qubits em baixo nível, assim como a linguagem Q#, é possível usar classes para imple-
mentar construções de alto nível como a descomputação da linguagem Silq (BICHSEL
et al., 2020). Em execuções quânticas simuladas, o Ket pode usar as variáveis do
tipo dump como uma ferramenta para facilitar a depuração e o estudo de algoritmos
quânticos. Apesar da visualização do código quântico como um circuito quântico ainda
não ter sido implementada, o Libket possibilita a extração para inspeção do código
quântico gerardo.

Como trabalhos futuros, pretendemos fazer a especificação formal da linguagem Ket,
apresentando as extensões que fizemos na linguagem Python, e implementar trata-
mento de erros semânticos e erros que possam ocorrer durante uma execução quân-
tica. Na arquitetura de tempo de execução proposta nós não tratamos propriamente do
problema da depuração de programas quânticos e há uma falta de precisão na descri-
ção da execução em hardware quântico, problemas que também queremos tratar em
trabalhos futuros.

Palavras-chave: Computação Quântica. Programação Quântica. Simulação Quântica.

LIST OF FIGURES

Figure 1 ± Our quantum programming and execution scenario. 18

Figure 2 ± Example of quantum circuit. 25

Figure 3 ± Quantum Programming Languages through the yeas. 33

Figure 4 ± Quantum programming languages classification. 39

Figure 5 ± Ket’s runtime architecture . 43

Figure 6 ± The quantum teleportation circuit, where |β00⟩ = |00⟩+|11⟩√
2

. The last

two quantum gates Z and X are controlled by the measurement result

of the top two qubits. 46

Figure 7 ± Libket Command Line Interface . 49

Figure 8 ± Benchmarks. 53

Figure 9 ± Comparison between Groves’ algorithm and Shor’s algorithm. 54

Figure 10 ± Quantum computer ibmq_16_melbourne v2.0.6 calibrated at April 16,

2020. The nodes represent the qubits and the links represent the

possibility of applying a CNOT between two qubits. Screenshot by

author from https://quantum-computing.ibm.com. 55

LIST OF TABLES

Table 1 ± Number of bits necessary to store the information of n qubits. 23

Table 2 ± Summary of the Dirac/bra-ket notation. 25

Table 3 ± Traditional quantum gates. 27

Table 4 ± Quantum Programming Languages 38

Table 5 ± QASM languages for quantum hardware execution. 39

Table 6 ± Quantum simulators used in the Benchmarks. 52

Table 7 ± Computer setup used in the benchmarks. 52

Table 8 ± Quantum gates available in Ket. 58

CONTENTS

1 INTRODUCTION . 16

1.1 MOTIVATION . 17

1.2 RESEARCH PROBLEM . 17

1.3 PROGRAMMING AND EXECUTION SCENARIO 18

1.4 OBJECTIVES . 19

1.5 WORK DELIMITATION . 20

1.6 CONTRIBUTIONS . 20

1.7 METHODOLOGY . 21

1.8 DISSERTATION STRUCTURE . 22

2 QUANTUM COMPUTATION . 23

2.1 QUANTUM BITS IN A NUTSHELL . 23

2.2 THE POSTULATES OF QUANTUM MECHANICS 25

2.2.1 State Space . 25

2.2.2 System Evolution . 26

2.2.3 Measurement . 26

2.2.4 Composed System . 28

3 QUANTUM PROGRAMMING . 30

3.1 PROGRAMMING PARTICULARITIES 30

3.1.1 Features . 30

3.1.2 Limitations . 31

3.1.3 Construction Constraints . 32

3.2 RELATED WORKS: QUANTUM PROGRAMMING LANGUAGES . . 33

3.3 CLASSIFICATION . 38

3.3.1 Quantum Assembly Languages . 39

3.3.2 Quantum Circuit Description Languages 40

3.3.3 Classical-Quantum Programming Languages 41

4 PROPOSED RUNTIME ARCHITECTURE 43

4.1 LIBKET: SHARED LIBRARY . 43

4.1.1 Runtime Quantum Code Generation 46

4.1.2 Delayed Execution . 46

4.1.3 Inverse and Controlled Operations 47

4.1.4 Dump & Metrics . 48

4.1.5 Libket CLI . 49

4.2 QUANTUM GATE DECOMPOSITION 49

4.3 KET BITWISE SIMULATOR: QUANTUM SIMULATOR 50

4.3.1 Ket Bitwise Plugins . 51

4.3.2 Benchmark . 51

4.4 QUANTUM HARDWARE EXECUTION 53

4.5 CONSIDERATIONS . 56

5 KET: A NOVEL QUANTUM PROGRAMMING LANGUAGE 57

5.1 TYPES & QUANTUM OPERATIONS 57

5.2 CONTROLLED OPERATIONS . 60

5.3 INVERSE OPERATIONS . 62

5.4 QUANTUM COMPUTER’S CONTROL FLOW 65

5.5 DESIGN DECISIONS AND LIMITATIONS 67

5.6 CONSIDERATIONS . 69

6 CONCLUSION . 70

References . 73

APPENDIX A ± PYTHON AST TRANSFORMATION FOR KET . . 82

A.1 STATEMENT IF-THEN-ELSE . 82

A.2 STATEMENT WHILE-ELSE . 82

APPENDIX B ± MICROSOFT Q# CODING CONTEST WITH KET . 86

B.1 MICROSOFT Q# CODING CONTEST - SUMMER 2018 86

B.2 MICROSOFT Q# CODING CONTEST - WINTER 2019 92

B.3 MICROSOFT Q# CODING CONTEST - SUMMER 2020 100

16

1 INTRODUCTION

Motivated by the nature of simulating the evolution of quantum states, Feynman

(1982) conjectured that a computer using quantum mechanics phenomena, such as

superposition and entanglement, could solve some problems faster than conventional

computers. We call such a computer of a quantum computer, and in contrast, we call

classical computers the ones that do not rely on the quantum model. The seminal works

of Shor (1997) and Grover (1997) confirmed this advantage of quantum computers over

classical ones. Shor’s algorithm uses a quantum subroutine to solve the Integer Fac-

torization problem in polynomial-time. A problem without a known classical polynomial

algorithm. Grover’s algorithm, on the other hand, is an O(
√

n) time algorithm for the

unordered databases search problem, known for having an O(n) classical lower bound.

Today, the Quantum Algorithm Zoo (JORDAN, 2021) lists more than 60 quantum al-

gorithms for algebra, simulation, optimization, machine learning, and more, with up to

superpolynomial speedup compared with their classical counterparties.

Today, we are in the Noisy Intermediate-Scale Quantum (NISQ) (PRESKILL,

2018) era with quantum computers featuring a few dozen noisy qubits operated by

low-fidelity quantum gates. In this era, the number of qubits and quantum gates restrict

the execution of several quantum algorithms. For example, even small instances of

Shor’s and Grover’s algorithms that would fit in the number of qubits of today’s quantum

computers struggle with decoherence, losing the quantum bits’ information to noise

because of low fidelity gates. However, we have passed the quantum advantage mile-

stone (ARUTE et al., 2019), where a quantum computer outperforms a supercomputer

solving a problem (not necessarily a useful one) with exponential speedup (PRESKILL,

2012).

Most physical realizations of quantum computers require specific conditions, iso-

lated from almost any kind of noise, to work correctly, adding an infrastructure and

maintenance cost to the quantum computer. Those requirements make quantum com-

puters suitable for cloud-based computation, where companies and institutions can use

quantum computation on-demand, cutting the costs of infrastructure and maintenance.

This mode is implemented today, with cloud-based quantum computation providers,

such as Amazon Braket and Microsoft Azure Quantum, represent most quantum com-

puters vendors. However, as the decoherence time of a cloud-based quantum computer

may be shorter than the latency between it and a classical computer, quantum execu-

tions are scheduled in batch, forbidding the interaction between the computers during

the quantum computation.

Chapter 1. Introduction 17

1.1 MOTIVATION

The challenge of developing a quantum programming language is long known.
As said by Deutsch (1985),

“Quantum computers raise interesting problems for the design of programming
languages [...]º (DEUTSCH, 1985).

However, it was only with the development of the first quantum computers in the last

decade that the research in quantum programming languages takes off, with only a

few examples dating before 2010. Today, manipulation of quantum superposition and

entanglement in programming languages is an open problem, with most languages

relying on low-level quantum instructions like quantum gates.

Along with the intrinsic quantum programming limitation, e.g., the no-cloning

(WOOTTERS; ZUREK, 1982) theorem and the reversible computation, quantum pro-

grammers also need to consider the constraints of the quantum computer construc-

tion when developing quantum applications. However, most high-level quantum pro-

gramming languages focus only on the intrinsic limitations of quantum computation,

disregarding quantum hardware limitations, like the interact limitation of cloud-based

quantum computers, the focus of this work. Also, with classical-quantum algorithms

like Shor’s algorithm and QAOA (FARHI et al., 2014) and protocols like the Quantum

Teleportation (BENNETT et al., 1993) that require interactive quantum computation,

quantum programming languages need to be open to hybrid classical-quantum pro-

gramming.

1.2 RESEARCH PROBLEM

When classical and quantum computers cannot communicate fast enough for

the quantum computer does not get idle, the quantum computer needs to run in batch

to reduce decoherence. Cloud-based quantum computation fits this scenario. Consid-

ering that a quantum computer implements classical control flow, it can use classical

information from measurements to control if-then-else and while statements. This

scenario raises our first research question: in the context of hybrid classical-quantum

programming, with a quantum computer processing in batch, how to implement an

interactive classical-quantum application?

Due to decoherence, fast execution is crucial for accurate quantum computation.

Therefore, the quantum computer must execute as few instructions as possible, par-

ticularly auxiliary classical operations, which imitates the quantum computer’s ability

to run generic quantum applications developed for an unknown classical input. In the

same classical-quantum programming scenario presented before, the second research

question of this work is: how to implement a generic quantum application with dynamic

Chapter 1. Introduction 19

Another constraint not addressed by the related works is for a single source

code to generate well-separated classical and quantum codes. You can use embedded

languages like Quipper (GREEN et al., 2013) to implement a whole classical-quantum

application, but you cannot separate the quantum and classical execution to run on

their respective computers. On the other hand, Q# (SVORE, K. et al., 2018) has a

well-separated quantum code. However, a general-purpose programming language is

required to coordinate the quantum execution and implement the classical one. We

consider that a single source code for a whole classical-quantum application facilitates

its development since there is no need to interface two programming languages.

We consider that quantum computers can execute simple classical expressions

and branch instructions to support the execution of loops and classical controls state-

ments, e.g., while and if-then-else. Although today’s quantum computers are limited

in terms of classical control flow, which impacts the classical-quantum interaction, there

are experimental results of quantum computers with full dynamic execution capacity

(FU et al., 2019).

1.4 OBJECTIVES

With the research problems of this work defined, we set the primary objective of

this work as the development of a new language and environment for hybrid classical-

quantum programming that mitigates the interaction limitation of cloud-based quan-

tum computers. In addition, the new programming language must guarantee the non-

violation of any aspect of quantum computation, like the no-cloning theorem (WOOT-

TERS; ZUREK, 1982) and reversible computation. To meet this objective, we list four

secondary objectives:

O1 To answer the first research question, the first secondary objective of this work

is to develop a model to mitigate the interaction limitation between classical and

quantum computers imposed by the batch processing of cloud-based quantum

computers;

O2 To answer the second research question, the second secondary objective of

this work is to develop a model to enable generic quantum programming with

dynamic execution while keeping the quantum computation as specific as possible,

avoiding passing instructions, which the classical computer can execute, to the

quantum computer;

O3 To test and validate our proposal, the third secondary objective of this work is the

implementation of the proposed quantum programming language;

O4 As part of the quantum programming environment, also to test and validate our

proposal, the last secondary objective of this work is to develop a quantum com-

Chapter 1. Introduction 20

puter simulator with the same interaction restrictions of cloud-based quantum

computers.

1.5 WORK DELIMITATION

In this work, we focus on gate-based quantum computers, not discussing the

impact of our proposal in another quantum computational model like adiabatic quantum

computing. We also do not approach the quantum debugging problem or any specifics

for quantum hardware execution, besides the limitation implied by the cloud-based

model of quantum computation.

We only test Ket on simulated quantum execution. However, we argue that it was

enough to validate our proposal since we implemented the simulator with the same

restrictions of cloud-based quantum computers in our scenario. We also emphasize

that noise quantum simulation is out of the scope of this work.

Quantum code optimization during or afterward the quantum code generation is

out of the scope of this work. Despite not being available in today’s quantum computers,

we assume that quantum computers can execute classical instruction from quantum

code, like binary operations and branches. We expect initial support for these features

soon (FU et al., 2019).

1.6 CONTRIBUTIONS

One product of this research is the Ket Quantum Programming framework, an

open-source project that features the Python-embedded classical-quantum program-

ming language Ket, the C++ runtime library Libket, and the quantum simulator Ket

Bitwise Simulator (KBW). We made all the source code is available at https://gitlab.

com/quantum-ket, including documentation at https://quantum-ket.gitlab.io. The

language and simulator are in use in the Grupo de Computação Quântica (Quantum

Computation Group) of the Universidade Federal de Santa Catarina, with already a

published research using the framework.

Our work is supporting the scientific research of Pires et al. (2021), which uses

the QAOA algorithm to find an approximation to the school timetabling problem, re-

ducing it to the graph coloring problem. Their work implemented the algorithm in the

Ket language, using KBW to run an execution with 42 qubits. Pires et al. (2021) have

a paper titled “Two Stage Quantum Optimization for the School Timetabling Problemº

published in the 2021 IEEE Congress on Evolutionary Computation (CEC).

This research also generated a paper title “Ket Quantum Programmingº. ac-

cepted in the ACM Journal on Emerging Technologies in Computing Systems (JETC)

for the special issue on Design Automation for Quantum Computing. This paper de-

scribes our main scientific and technical contributions:

Chapter 1. Introduction 21

• Design of a runtime architecture suitable for hybrid classical-quantum program-

ming with cloud-based quantum computers, implemented in the Ket Quantum

Programming framework;

• Design and implementation of the classical-quantum programming language Ket,

which generates a well-separated classical and quantum code and has dynamic in-

teraction between classical and quantum computers, problems not fully addressed

by the related works;

• The use of future variables as the return of quantum measurements to delay the

quantum execution and seamless integration of those variables with the program-

ming language constructions to control the quantum execution, even without the

measurement result;

• The improvement of the Bitwise representation, making the simulation time inde-

pendent of the number of qubits but dependent on the amount of superposition

and entanglement of the system.

1.7 METHODOLOGY

Our research is qualitative as it aims to find new ways to ease the programming of

classical-quantum applications by abstracting the quantum peculiarities and constraints

into more familiar classical programming constructions. To reach the primary objective

of this work, we use the following method.

• With the scenario and research problems defined, we survey the literature for

quantum programming languages with available implementation. We check how

they fit in the scenario and if they answered the research questions. However,

none surveyed quantum programming language fully satisfied the requirements.

• To answer the research problems, we first designed a runtime architecture and,

inspired by concurrent programming, introduced the future construct to handle

quantum measurements and classical information on the quantum computer.

• To test our proposal, we developed the essential components of the runtime

architecture, the runtime library (Libket), and a quantum simulator (KBW), imple-

menting the same restriction of cloud-based quantum computers.

• At first, we intended to use Libket as the runtime library of a new quantum pro-

gramming language developed from the ground up, fully integrating the future

variables in the language structures. However, we decided to implement the new

language Ket based on Python, since it was possible to seamlessly integrate

the future variables in most of the language’s constructions. Also, including all

Chapter 1. Introduction 22

the benefits of Python in Ket, making the language compatible with widespread

Python libraries like NumPy (HARRIS et al., 2020) and SciPy (VIRTANEN et al.,

2020).

• With Ket, we could effectively test and validate our proposal by implementing sev-

eral quantum applications like quantum teleportation, Shor’s algorithm, Grover’s

algorithm, QAOA, and more. We also implemented part of the Microsoft Q# Cod-

ing Contest to compare Ket with Q#. Those implementations also helped us debug

and improve Ket, Libket, and KBW.

• We have based the implementation of the quantum simulator (KBW) on the Bit-

wise representation (ROSA; TAKETANI, 2020), adding an optimization inspired by

the simulator Qrack (STRANO et al., 2020). We evaluated the KBW performance

benchmarking it against other state of the art quantum simulators.

• We developed Libket in C++ 17 using the Boost library, and for its Python wrapper,

we use SWIG (BEAZLEY, 1996). For Ket, we used Python as the base language,

constructing most of its functionality on top of the SWIG wrapper. We implement

transformations over the Python AST to integrate the future type with the Python

if and while statements. Libket communicates with KBW throw an API REST. We

used Python with Flask for the KBW server and ANTLR 4 (PARR, 2013) in C++

the parse and execute the quantum code. We also used the C++ Boost library in

KBW to implement the Bitwise representation.

1.8 DISSERTATION STRUCTURE

We present the basics of quantum computation and the postulates of quantum

mechanics in Chapter 2 and introduce quantum programming particularities in Chapter

3. Still, in chapter 3, we present our related works. Our contributions are in chapters 4

and 5. First, we introduce the proposed runtime architecture and its main components,

including Libket and KBW, in Chapter 4; and the new quantum programming language

Ket in Chapter 5. We end in Chapter 6 with the conclusions.

This work also has two appendices. In Appendix A, we present the Python AST

transformation necessary to integrate the future variables with the Python if-then-else

and while statements. And in Appendix B, we show the implementation of some prob-

lems of the Microsoft Q# Coding Contest in Ket.

23

2 QUANTUM COMPUTATION

In this chapter, we introduce some relevant quantum mechanics characteristics

in the context of quantum computation, highlighting their implications, benefits, and

limitations. We start with an overview of quantum computation in Section 2.1, presenting

the concept of quantum bit (qubit) and how to manipulate it to compute. And Section

2.2, we introduction the four postulates of quantum mechanics enumerated by Nielsen

and Chuang (2010a), which gives a mathematical formalism for quantum computation.

2.1 QUANTUM BITS IN A NUTSHELL

A quantum bit or a qubit is the basic unit of computation of a quantum computer.

Similar to a bit, a qubit has two possible states, 0 and 1, or |0⟩ and |1⟩ following the

Dirac (1939) notation. However, different from a bit, a qubit can be at both states 0 and

1 at the same time, in what we call a superposition. It enables a sequence of qubits

to store an exponential amount of information. For example, while a sequence with

four classical bits can store an unsigned integer number between 0 to 15, four qubits

can store all integers from 0 up to 5. In general, while n qubits can store 2n bits of

information, n bits only store a linear amount of information, meaning n bits. In Table 1,

we show this exponential increase in the qubits storage capacity.

Table 1 ± Number of bits necessary to store the information of n qubits.

n qubits Equivalent number of bits

1 2
2 4
4 16
8 256
16 65536
32 4294967296
64 18446744073709551616
128 340282366920938463463374607431768211456
256 115792089237316195423570985008687907853269984665640564039457584007913129639936

512 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096

1024 179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216

There is no polynomial-time method to evaluate a quantum superposition, in

other words, to identify all the states (numbers) of a qubit sequence. So in quantum

computation, the only viable way to collect classical information out of a quantum

superposition is by performing a measurement. A measurement will return information

about one state of a qubit superposition and collapse it. The collapse will destroy the

superposition and leave the qubit in a quantum state relative to the measurement

result. For example, consider a sequence of four qubits being at in a superposition of

Chapter 2. Quantum Computation 24

the states |0010⟩, |0100⟩, and |0110⟩; suppose that the measurement of those qubits

returns 0100, the following measurement results will always be 0100 because the qubits

has collapsed to |0100⟩.
A qubit in a superposition is represented by α |0⟩ + β |1⟩, where α and β are

complex number and |α|2 + |β|2 = 1. The number α and β are probability amplitudes

that ponders the random result of a measurement. For example, the measurement of

the qubit α |0⟩ + β |1⟩ has probability |α|2 of return 0 and |β|2 of return 1. In general

terms, the measurement of a n qubit sequence
∑︁2n±1

k=0 αk |k⟩, where
∑︁2n

k=0 |αk |2 = 1,

has probability |αk |2 of return k .

In the quantum entanglement phenomena, two or more qubits can be in an

entangled state where a single qubit cannot fully describe a part of the whole collection.

By consequence, a change on one qubit affects all qubits of an entangled set. For

example, taking the pair of entangled qubits |β00⟩ = |00⟩+|11⟩√
2

, if we measure a single

qubit, we know the state of the other without measuring it. The measurement of any

qubit of |β00⟩ is equal to b ∈ {0, 1}, and the collapsed state is |bb⟩.
To manipulate qubits, which includes creating and destroying superposition and

entanglement, or in other words, to tate a quantum bit from state |ψA⟩ to |ψB⟩, we

use unitary operations called quantum gates. Examples of quantum gates are the

Hadamard gate

H |0⟩ =
|0⟩ + |1⟩√

2

H |1⟩ =
|0⟩ ± |1⟩√

2

(1)

and the CNOT gate

CNOT |a b⟩ = |a (a ⊕ b)⟩ . (2)

Quantum computation is reversible because quantum gates are time-reversible.

So, we can undo any quantum computation until a measurement. Also, quantum gates

cannot copy the state of a qubit to another. Because it would violate the no-cloning

theorem (WOOTTERS; ZUREK, 1982).

A quantum circuit, usually represented by a diagram, describes a sequence

of quantum gates and measurements. Figure 2 is an example of a quantum circuit.

The lines represent qubits and the double lines classical bits (measurement result).

Quantum gates are usually represented by a box that may wrap more than one qubit.

We can also add control qubits to any quantum gate. For instance, the CNOT gate (Eq.

(2)) is a Not gate (X gate, Eq. (3)) with a control qubit.

X |0⟩ =
⃓

⃓1⟩
X |1⟩ =

⃓

⃓0⟩
(3)

The circuit of Figure 2 with qubits |xy⟩ has the following gate order H |x⟩ (equation

(4)), CNOT |x y⟩ (equation (2)), and measures x and y (equation (6)). With this circuit,

Chapter 2. Quantum Computation 25

Figure 2 ± Example of quantum circuit.

|x⟩ H •

|y⟩

if x = 0 and y = 0, the evolution will be

Hx |00⟩ =
|00⟩ + |10⟩√

2
, (4)

CNOT
|00⟩ + |10⟩√

2
=

|00⟩ + |11⟩√
2

, (5)

M
|00⟩ + |11⟩√

2
=

{︄

50% probability of measuring 00

50% probability of measuring 11
. (6)

2.2 THE POSTULATES OF QUANTUM MECHANICS

In this section, we explain the basics of quantum computation using the four

postulates of quantum mechanics enumerated by Nielsen and Chuang (2010a). They

are an attempt to represent the quantum world formally using math, more specifically,

using linear algebra. The postulates define how to describe: qubits (Subsection 2.2.1);

functions that changes the qubits state (Subsection 2.2.2); the probability and effect of

a measure (Subsection 2.2.3); and, how to extrapolate it for multiple qubits (Subsection

2.2.4). Quantum computation uses the Dirac/bra-ket notation to represent vectors. As it

is not usual outside quantum mechanics, we summarize this notation in Table 2.

Table 2 ± Summary of the Dirac/bra-ket notation.

Notation Description

z∗ Conjugate of z ∈ C

AT Transpose of matrix A

A∗ Conjugate matrix A

A† conjugate transpose of matrix A, A† = (AT)
∗

|ψ⟩ Column vector; pronounced “ket ψº
⟨ψ| Dual vector of |ψ⟩; pronounced “bra ψº; ⟨ψ| = |ψ⟩†

⟨φ|ψ⟩ Inner product between |φ⟩ and |ψ⟩
|φ⟩ ⊗ |ψ⟩ Tensor product between |φ⟩ and |ψ⟩
|φ⟩ |ψ⟩ Tensor product between |φ⟩ and |ψ⟩
|φψ⟩ Tensor product between |φ⟩ and |ψ⟩

2.2.1 State Space

Postulate 1: Associated to any isolated physical system is a complex vector
space with inner product (that is, a Hilbert space) known as the state space of
the system. The system is completely described by its state vector, which is a
unit vector in the system’s state space. (NIELSEN; CHUANG, 2010a, p. 80)

Chapter 2. Quantum Computation 26

Based on the first postulate, we can represent n qubits by a vector ∈ C
2n

with

norm 1. As mentioned in the last section, qubits can store exponentially more data than

bits, which also implies an exponential scale in memory and time to simulate quantum

states.

We can represent qubits by linear combinations of base vectors, usually the

computational base. For example, we can express the qubit |ψ⟩ = [α β]T (where α,β ∈
C and |α|2 + |β|2 = 1) using the one-qubit computation base, formed by |0⟩ = [1 0]T and

|1⟩ = [0 1]T , like |ψ⟩ = α |0⟩ + β |1⟩.

2.2.2 System Evolution

Postulate 2: The evolution of a closed quantum system is described by a
unitary transformation. That is, the state |ψ⟩ of the system at time t1 is related
to the state |ψ′⟩ of the system at time t2 by a unitary operator U which depends
only on the times t1 and t2,

|ψ′⟩ = U |ψ⟩ . (7)

(NIELSEN; CHUANG, 2010a, p. 81)

By the second postulate, we can describe a quantum computation in discrete

steps, each one represented by a unitary matrix with dimension 2n, where n is the

number of qubits. Again, we have an exponential speed-up in quantum computation

that requires exponential resources to simulate. And, since evolution is unitary, we have

the limitation that every step in a quantum computation needs to be time-reversible.

We present the matrix representation of the Hadamard (Equation (1)) and CNOT

(Equation (2)) gates along with other traditional quantum gates in Table 3. We can

rewrite equations

H |0⟩ =
|0⟩ + |1⟩√

2

H |1⟩ =
|0⟩ ± |1⟩√

2

(8) and CNOT |a b⟩ = |a (a ⊕ b)⟩ . (9)

as

1√
2

[︄

1 1

1 ±1

]︄[︄

1

0

]︄

=
1√
2

[︄

1

1

]︄

1√
2

[︄

1 1

1 ±1

]︄[︄

0

1

]︄

=
1√
2

[︄

1

±1

]︄ (10) and

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

a0b0

a0b1

a1b0

a1b1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

a0b0

a0b1

a1b1

a1b0

⎤

⎥

⎥

⎥

⎥

⎦

.

(11)

Note the matrix dimension must match the number of qubits.

2.2.3 Measurement

Postulate 3: Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes

Chapter 2. Quantum Computation 27

Table 3 ± Traditional quantum gates.

Gate Matrix Effect Circuit

Pauli X

[︃

0 1
1 0

]︃

X |0⟩ = |1⟩
X |1⟩ = |0⟩ X

Pauli Y

[︃

0 ±i

i 0

]︃

Y |0⟩ = ±i |1⟩
Y |1⟩ = i |0⟩ Y

Pauli Z

[︃

1 0
0 ±1

]︃

Z |0⟩ = |0⟩
Z |1⟩ = ± |1⟩ Z

Hadamard 1√
2

[︃

1 1
1 ±1

]︃

H |0⟩ = 1√
2

|0⟩ + 1√
2

|1⟩
H |1⟩ = 1√

2
|0⟩ ± 1√

2
|1⟩ H

S

[︃

1 0
0 i

]︃

S |0⟩ = |0⟩
S |1⟩ = i |1⟩ S

S†
[︃

1 0
0 ±i

]︃

S† |0⟩ = |0⟩
S† |1⟩ = ±i |1⟩ S†

T

[︃

1 0
0 eiπ/4

]︃

T |0⟩ = |0⟩
T |1⟩ = 1+i√

2
|1⟩ T

T †
[︃

1 0
0 e±iπ/4

]︃

T † |0⟩ = |0⟩
T † |1⟩ = 1±i√

2
|1⟩ T †

Phase
[︃

1 0
0 eiλ

]︃

P |0⟩ = |0⟩
P |1⟩ = eiλ |1⟩ eiλ

RX

[︃

cos θ

2 ±i sin θ

2
±i sin θ

2 cos θ

2

]︃

RX |0⟩ = cos θ

2 |0⟩ ±i sin θ

2 |1⟩
RX |1⟩ = ±i sin θ

2 |0⟩ + cos θ

2 |1⟩ RXθ

RY

[︃

cos θ

2 ± sin θ

2
sin θ

2 cos θ

2

]︃

RY |0⟩ = cos θ

2 |0⟩ ±i sin θ

2 |1⟩
RY |1⟩ = ± sin θ

2 |0⟩ + cos θ

2 |1⟩ RYθ

RZ

[︃

e±iθ/2 0
0 eiθ/2

]︃

RZ |0⟩ = e±iθ/2 |0⟩
RZ |1⟩ = eiθ/2 |1⟩ RXθ

CNOT

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎥

⎦

CNOT |a b⟩ = |a (a ⊕ b)⟩ •

SWAP

⎡

⎢

⎢

⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎦

SWAP |a b⟩ = |b a⟩ ××

that may occur in the experiment. If the state of the quantum system is |ψ⟩
immediately before the measurement then the probability that result m occurs
is given by

p(m) = ⟨ψ| M
†
mMm |ψ⟩ , (12)

and the state of the system after the measurement is

Mm |ψ⟩
√︂

⟨ψ| M
†
mMm |ψ⟩

. (13)

The measurement operators satisfy the completeness equation,
∑︂

m

M
†
mMm = I. (14)

(NIELSEN; CHUANG, 2010a, p. 84)

Chapter 2. Quantum Computation 28

The third postulate refers to the probability and consequences of measurement.

Note that different from a quantum gate, a quantum measurement is not a unitary

operation. It lost information in the process, so it is not time-reversible.

The measurement operators of the one-qubit computational base (Pauli Z) are

M0 = |0⟩⟨0| =

[︄

1 0

0 0

]︄

and M1 = |1⟩⟨1| =

[︄

0 0

0 1

]︄

. (15)

Replacing Mm with M0 and M1 on Equation (12) for |ψ⟩ = α |0⟩ + β |1⟩ we see that

p(0) = |α|2, and p(1) = |β|2, respectively. And, in Equation (13), if we measure zero, the

state will be α|0⟩
|α| , and if we measure one, the state will be β|1⟩

|β| .

2.2.4 Composed System

Postulate 4: The state space of a composite physical system is the tensor

product of the state spaces of the component physical systems. Moreover, if
we have systems numbered 1 through n, and system number i is prepared in
the state |ψi⟩, then the joint state of the total system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.
(NIELSEN; CHUANG, 2010a, p. 92)

The last postulate extrapolates the others for multiples qubits. It relies on the

tensor product to concatenate qubits and operations. Equation (16) generalize this

operation for matrixes, where A is m × n and B is p × q.

A ⊗ B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A11B A12B A1nB

A11B A12B A1nB

A21B A22B A2nB

Am1B Am2B AmnB

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

mp×nq

(16)

Now, we can rewrite Equation (4) as matrix multiplication. With the initial state

|xy⟩ = |00⟩ = |0⟩ ⊗ |0⟩ =

[︄

1

0

]︄

⊗
[︄

1

0

]︄

=

⎡

⎢

⎢

⎢

⎢

⎣

1

0

0

0

⎤

⎥

⎥

⎥

⎥

⎦

, (17)

we need to concatenate the Hadamard gate with the Identity

H ⊗ I =
1√
2

[︄

1 1

1 ±1

]︄

⊗
[︄

1 0

0 1

]︄

=
1√
2

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1 0

0 1 0 1

1 0 ±1 0

0 1 0 ±1

⎤

⎥

⎥

⎥

⎥

⎦

(18)

Chapter 2. Quantum Computation 29

to take the matrix to a compatible dimension and operate only with the qubit |x⟩

Hx |00⟩ = (H ⊗ I) |00⟩ =
1√
2

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1 0

0 1 0 1

1 0 ±1 0

0 1 0 ±1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

1

0

0

0

⎤

⎥

⎥

⎥

⎥

⎦

=
1√
2

⎡

⎢

⎢

⎢

⎢

⎣

1

0

1

0

⎤

⎥

⎥

⎥

⎥

⎦

=
|00⟩ + |10⟩√

2
. (19)

The measurement operators for the two-qubits computational base are {Ma⊗Mb | Ma, Mb ∈
{|0⟩⟨0| , |1⟩⟨1|}}, and we can generalize for n-qubits as {|k⟩⟨k | | 0 ≤ k < 2n}.

30

3 QUANTUM PROGRAMMING

Quantum programming is a relatively new paradigm that has particularities that

do not exist in classical programming. We start this chapter by discussing those quan-

tum programming features and limitations (Section 3.1). For our related works, we

present an overview of quantum programming languages (Section 3.2), classifying than

in Quantum Assembly Languages, Quantum Circuit Circuit Description Languages, and

Classical-Quantum Programming Languages (Section 3.3).

3.1 PROGRAMMING PARTICULARITIES

Quantum computers have features and constraints that are not present in clas-

sical computers, therefore, not addressed by classical programming languages. In this

section, we introduce some aspects of quantum computation, highlighting its impact on

quantum programming. We divide those characteristics into Features, Limitations, and

Construction Constraints. In Features (Subsection 3.1.1), we present quantum com-

putations advantages that can speed up computation, and in Limitations (Subsection

3.1.2), we introduce restrictions that get in the way of quantum programming. For Con-

struction Constraints (Subsection 3.1.3), we discuss quantum programming limitations

that are not intrinsic of quantum computation but reflections from the NISQ computers.

3.1.1 Features

Superposition and entanglement are the quantum mechanics phenomena that

give quantum computers their power (NIELSEN; CHUANG, 2010a). As these features

are not available in classical computers, and to simulate them takes exponential time

and space, classical programming languages had no reason to address superposition

and entanglement. Only quantum computers have turned those characteristics relevant.

As quantum programming is a relatively new paradigm, we do not have a standard or

consolidated method to create and represent superposition and entanglement.

Non-determinism and parallelism are not good analogies for superposition, de-

spite commonly used. A quantum register has the potential of having more than one

associated value. For instance, while a 32-bits integer stores a single number, a 32-

quantum-bits integer stores up to 232 numbers. With superposition, we have expo-

nential storage capacity, where n-quantum-bits equals 2n-bits of information. Also, the

process that creates superposition is deterministic and not understood as branching in

computation.

Unlike the branches of a non-deterministic execution, states in superposition

interfere with each other. And for parallelism, even if we had enough memory to store

quantum bits equivalents, the parallel execution is limited by the number of threads.

Chapter 3. Quantum Programming 31

Also, in parallel execution, we need to coordinate memory access to avoid a race

condition, which is not the case for superposition since it is a single execution branch.

As both superposition and entanglement are simultaneously necessary for a

quantum computer to express its power, it is hard to unlink these two features. A usual

approach for quantum programming languages to store quantum information is to use

the standard quantum bit, or qubit for short. Indeed, all programming languages for

digital quantum computation of our related works (Section 3.2) use the qubit represen-

tation. We discuss how to manipulate the quantum state to generate superposition and

entanglement in the next subsection.

Quantum computation is reversible in time, meaning that we can undo any

quantum computation before a measurement. Reversibility is an intrinsic characteristic

of quantum computation used by several quantum algorithms. We continue to discuss

reversibility in the next subsection.

3.1.2 Limitations

As we mentioned before, a quantum state can store an exponential amount of

information. However, we cannot know the state in polynomial time. Therefore, in quan-

tum computation, measurement is the only viable way to gather classical information

from a quantum superposition. A measurement returns one base state of a superposi-

tion at random, but in the process, it collapses the superposition to the measured state.

For example, the measurement of qubit |0⟩ + |1⟩ can return either 0 or 1, collapsing the

qubit to |0⟩ or |1⟩, respectively.

Measurement is the only operation that simultaneously changes the quantum

state and returns classical information. Also, it is the only non-reversible quantum

operation. In quantum programming languages, measurement is an explicit statement,

usually in the computational base.

A quantum state is equivalent to a unit vector, and except for measurement,

quantum operations are unitary transformations, meaning that there is no loss of

information during computation. This characteristic makes reversibility an intrinsic fea-

ture of quantum computation. However, since reversibility is not a concern for classical

programming languages, they do not provide ways to prevent irreversible constructions.

However, quantum programming languages must provide means to restrict or warn the

use of irreversible quantum operations.

A possible strategy prevent irreversible quantum operations is to only use quan-

tum gates to manipulate the quantum state. As quantum gates are reversible, any

combination of gates is also reversible. The downside of quantum gates is that they are

not so intuitive as the usual classical operations. For example, the sum of two qubits-

registers requires a polynomial number of gates instead of a single sum operation. On

the other hand, as most quantum computers use the quantum gate model of compu-

Chapter 3. Quantum Programming 32

tation, compiling from a quantum programming language build on quantum gates is

straightforward. Also, high-level quantum programming languages provide ways to wrap

quantum gates in subroutines to implement more complex operations.

The use of quantum gates also prevents the no-cloning theorem (WOOTTERS;

ZUREK, 1982) violation, but that is not enough in itself. We cannot copy a quantum

state from a qubit to another, a usual and necessary classical programming operation.

Most quantum programming languages use linear-type system (BICHSEL et al., 2020;

PAYKIN et al., 2017; GREEN et al., 2013) or opaque reference (SVORE, K. et al., 2018;

CROSS et al., 2017) to avoid quantum state copies.

In a linear type system, we can use a variable once only. This way, we cannot

pass a variable that stores a quantum state to more than one function/gate or assign

it to another variable and keep using the original. Quantum programming languages

can enforce the use of linear type only on quantum variables (BICHSEL et al., 2020;

SINGH et al., 2017).

Qubit data types can store an opaque reference instead of a quantum state, so

any explicit or implicit copy operation only copies the reference. This strategy makes it

easy to translate from a high-level quantum programming language to a low-level one

since most quantum assembly languages use opaque qubits reference. Considering

that only quantum gates can change the quantum state, any other operation on a qubit

reference has no quantum side effect.

3.1.3 Construction Constraints

The main limitations of NISQ computers are the number of qubits, quantum

gate fidelity, and decoherence time (PRESKILL, 2018). Although those metrics have

increased significantly in recent years, we do not expect to get rid of those implementa-

tion constraints soon.

The number of qubits limits the input size of a quantum application. For example,

in Shor’s factorization algorithm (GIDNEY; EKERÅ, 2021), the larger the number you

want to factorize, the more qubits you need. On the other hand, the quantum gate fidelity

limits the complexity of a quantum application. Since every operation introduces a small

error to the quantum state, it can accumulate, invalidating the quantum computation.

Another factor that limits a quantum application complexity is the decoherence time

(DEVITT et al., 2013), which tells how long a quantum computer can hold a quantum

state coherently, independently of the computation.

The execution of classical instruction and classical control flow on today’s

quantum computers are limited, although improving (FU et al., 2019). Considering that

a quantum computer is a coprocessor or a cloud service, quantum programming lan-

guages need to separate and handle classical instructions and information on quantum

computers.

Chapter 3. Quantum Programming 34

languages in Quantum Assembly Language, Quantum Circuit Circuit Description Lan-

guage, and Classical-Quantum Programming Language. In the remainder of this sec-

tion, we present an overview of each known quantum programming language.

Blackbird (KILLORAN et al., 2019) is a quantum assembly language for con-

tinuous variable (CV) quantum computation that targets Xanadu’s photonic quantum

information processors and the Strawberry Fields simulator. The Strawberry Fields pro-

vides a Python-embedded implementation of Blackbird, which uses the same syntax as

the standalone language with the extension of Python constructions. The CV quantum

computation model uses a different set of quantum gates that act on qumodes, CV

equivalent for qubits. The computational power of the Quantum Gate and CV models is

equivalent. Blackbird is the only language in the survey that targets the CV model.

FJQuantum (FEITOSA et al., 2016) is an extension of the Featherweight Java

language that handles quantum data through a monadic approach. Featherweight Java

is a subset of Java, focusing on a functional perspective. The language does not provide

quantum gate primitives. Instead, it provides features like conditional control, monadic

sum, and scalar product that we can use to implement quantum gates. Although it is

possible to implement quantum gates in FJQuantum, we cannot classify the language

in the Quantum Gate model of computation. FJQuantum has an interpreter with a built-

in quantum simulator available.

LIQUi |⟩ (WECKER; SVORE, K. M., 2014) is an F#-embedded quantum pro-

gramming language developed by the Quantum Architectures and Computation team

of Microsoft Research. The programming language is hardware-independent, but it sup-

ports architecture-specific timing and layout constraints. It also provides tools to study

quantum noise and quantum error correction code, simulating thousands of qubits with

a stabilizer simulator. In addition to simulation, LIQUi |⟩ also supports quantum circuit

rendering.

LanQ (MLNARIK, 2007) is a high-level quantum programming language with

C-like syntax, which implements classical control and quantum data stored in qubits. It

also provides means for parallel process execution and communication, with channels

sharing classical and quantum information in shared memory. The language uses the

Quantum Gate model, and its reference implementation provides a quantum computer

simulator.

OpenQASM (CROSS et al., 2017) is one of the most used quantum assembly

languages. Specified by the IBM Quantum Computing group, the language is used

Chapter 3. Quantum Programming 35

in the IBM Quantum Experience and Qiskit platforms (ANIS et al., 2021) and as an

intermediary representation for some quantum applications (JAVADIABHARI et al.,

2014; KISSINGER; WETERING, 2020; BERGHOLM et al., 2020). On its current version,

OpenQASM 2.0 is equivalent to the Quantum Circuit model of computation, featuring

classical and quantum bit registers, a two-qubits gate (CNOT), the single-qubit rotation

U gate,

U(θ,ϕ, λ) =

[︄

cos(θ) e±iλ sin(θ)

eiϕ sin(θ) ei(ϕ+λ) cos(θ)

]︄

(20)

Pauli Z measurement, and if-then statement. The language’s next iteration, Open-

QASM 3.0, which is under development, plans to add classical control flow, instructions,

and types to enable the interactive quantum execution.

QCL (ÖMER, 2005) is the first implementation of a quantum programming lan-

guage developed to fill the gap between quantum mathematical formalism and the

classical programming constructions well-known by computer scientists. Build on top

of the Quantum Gate model, the programming language has a C-like syntax, and its

implementation features a quantum simulator.

QMASM (PAKIN, 2016) is a quantum assembly language for quantum annealing

that provides low-level instructions and hardware-independent abstraction. It is suitable

to be used as a programming language itself or as a compilation target for higher-

level programming language. The QMASM implementation uses the D-Wave Ocean

(D-WAVE SYSTEMS INC., 2021), which targets D-Wave’s hardware and simulator.

Quantum annealing is a weaker model of computation than Quantum Gate, focused on

solving optimization problems. QMASM is the only language targeting quantum anneal-

ers in this survey. The assembly language was first called QASM and later renamed to

avoid ambiguity.

QRunes (CHEN; GUO, 2019) is a high-level imperative quantum programming

language designed to be transpiled to C++ and Python, using, respectively, the libraries

QPanda and pyQPanda. Those libraries feature CPU, GPU, and cloud-based quantum

simulators of up to 32 qubits.

QWIRE (PAYKIN et al., 2017) is a language for quantum circuit descriptions,

which uses a linear type system to ensures the non-violation of the no-cloning theo-

rem. Intended to be an embedded programming language, but without a specific host

language, QWIRE has an implementation embedded in the Coq proof assistant that

compiles for OpenQASM.

Chapter 3. Quantum Programming 36

Q# (SVORE, K. et al., 2018) is a domain-specific quantum programming lan-

guage part of the Microsoft Quantum Development Kit (QDK). It features statements

similar to C# and F#, asserts for quantum debugging, and specific quantum statements,

like the repeat-until-success comparable to the C do-while statement with a fixup code

that runs after an unsuccessful loop. The language has a vast standard library with

methods for quantum chemistry, machine learning, quantum error correction, and more.

The language implementation features a full state simulation similar to LIQUi |⟩ and

a limited Toffoli simulator for millions of qubits that only operate with Not and multi-

controlled Not gates. With a quantum resource estimator, Q# can also provide metrics

such as the number of qubits and quantum gates need for a given quantum program.

Q# programs can run standalone, executing in command line or Jupyter Notebook, or

integrated with Python, C#, or F#.

Quantum while-language (LIU et al., 2017) is a quantum programming lan-

guage embedded in C#. It is part of the Q|SI⟩ quantum programming environment that

features quantum simulation, optimization, analyzing, and verification. The program-

ming language extends C# with qubit datatype, quantum gates, quantum measurement,

and if and while statements based on measurement results.

Quil (SMITH et al., 2017) is an instruction set or assembly language for hy-

brid classical-quantum computers. The language divides into classical and quantum

states, with classical bits and a program counter (PC) forming the classical state and

qubits composing the quantum state. Jump instructions can change the PC to imple-

ment control flow. Quantum gates and measurement are the only instructions that can

change the quantum state, with measurement being the only operation that affects both

classical and quantum states. Although Quil uses the same gate-based model of com-

putation as cQASM and OpenQASM, the ability to implement control flow makes Quil

more expressive, meaning that it can describe a more comprehensive set of algorithms

and methods. The Forest SDK provides means to generate Quil code with the pyQuil,

and execute then on Rigetti’s quantum computers and simulators. However, Rigetti’s

computers support only a subset of Quil that does not allow control flow.

Quipper (GREEN et al., 2013) is a Haskell-embedded quantum programming

language that allows the scalable description of large and parameterized quantum cir-

cuits. Its primary objective is to estimate and reduce resources for quantum algorithm

execution on quantum hardware. Therefore the language provides a comprehensive

quantum computation library and robust operators for quantum circuit assembling. It

also implements a quantum circuit simulator and rendering.

Chapter 3. Quantum Programming 37

Qumin (SINGH et al., 2017) is a minimalist quantum programming language

composed of two sub-languages defined in lambda calculus. An untyped language han-

dles the classical operation and controls the quantum operations, while a language with

a linear type system manipulates the qubits applying quantum gates and measurement.

This construction imposes restrictions to enforce the no-cloning theorem (WOOTTERS;

ZUREK, 1982) only on the quantum part of the programming language, without affect-

ing the classical one. An experimental implementation of an interpreter is available for

the Qumin.

SQIR (HIETALA et al., 2021) is a quantum intermediary representation language

embedded in Coq for the VOQC verified optimizer. VOQC can convert SQIR to Open-

QASM and vice versa, allowing the integration with several quantum programming

software.

Scaffold (JAVADIABHARI et al., 2014) is a C-like quantum programming lan-

guage for static quantum circuit description. The language implements the novel feature

Classical-To-Quantum-Gate that creates quantum circuits from classical ones gener-

ated from the language’s statements and expressions. As a Scaffold program statically

describes quantum circuits, the Scaffold compiler (ScaffCC) performs loop-unrolling

during the compilation process to implement the ’for’ statement. ScaffCC compiles to

OpenQASM, among other compilations targets.

Silq (BICHSEL et al., 2020) is a high-level quantum programming language that

uses inverse quantum computation to free temporary variables. Releasing temporary

qubits without removing their entanglement with the rest of the system has unwanted

side effects. Silq performs uncomputation to untangle and release qubits, allowing it to

have a syntax closer to classical programming, mitigating the reverse quantum compu-

tation problem. The Silq’s interpreter features a built-in quantum simulator.

cQASM (KHAMMASSI et al., 2018) is a technology-independent quantum as-

sembly language for quantum circuit description. The language objective is to present

a common quantum assembly language to interface with different tools, unifying the

diverse QASM dialects. As DQCsim frontend, the cQASM can target the Quantumsim

and QX simulators. Overall, the assembly language has classical and quantum bits

registers, several gates of one, two, and three qubits, measurement in Pauli Z , X , and

Y , control statement, and static loops.

Chapter 3. Quantum Programming 38

3.3 CLASSIFICATION

We divide the quantum programming languages (QPL) into three groups based

on their abstraction and expressivity power. The low-level QPLs, Quantum Assem-

ble languages; and the high-level QPLs, Quantum Circuit Description Languages and

Classical-Quantum Programming languages. Also, we can divide the high-level QPLs

into functional and imperative based on their programming paradigm. Figure 4 illus-

trates this division, and Table 4 summarizes the classification. We can also classify

Quantum Programming Languages into Functional and Imperative as in the previous

surveys (GAY, 2006; GARHWAL et al., 2021; SELINGER, 2004; SOFGE, 2008a).

In the next subsections, we discuss the classification of QPLs in Quantum As-

sembly languages, Quantum Circuit Description Languages, and Classical-Quantum

Programming Languages, emphasizing the particularities of each group and its main

QPLs.

Table 4 ± Quantum Programming Languages

Programming Language
Paradigm

Programming

Quantum Assembly Language

Blackbird Imperative
cQASM Imperative

OpenQASM Imperative
QMASM Imperative

Quil Imperative
Quantum Circuit Description Language

LIQUi |⟩ Functional
Quipper Functional
QWIRE Functional
Scaffold Imperative

SQIR Functional
Classical-Quantum Programming Language

FJQuantum
Functional

Obj. Oriented/

LanQ Imperative
QCL Imperative

QRunes Imperative
Q# Imperative

Qumin Functional
Silq Imperative

quantum while-language Imperative

Chapter 3. Quantum Programming 40

For quantum hardware execution using the quantum gate model of quantum

computation, the available QASM are OpenQASM (CROSS et al., 2017) and Quil

(SMITH et al., 2017), used to program the IBM and Rigetti quantum computers, respec-

tively. An OpenQASM program describes a quantum circuit with quantum gates and

if statements. Similarly, Quil manipulates the quantum state with quantum gates, but

for classical control, it uses an approach more similar to the classical assembly. Quil

allows better control of the program counter than OpenQASM by implementing labels

and jump instructions. This characteristic makes Quil a more expressive language than

OpenQASM, allowing it to implement, among other things, the semantics of the state-

ments if-then-else, for, and while. However, today, neither IBM nor Rigetti quantum

computers support interactive quantum execution. The OpenQASM v3, which is under

development, plans to add classical control flow and instructions.

Naming a quantum assembly language of QASM is commonplace. For example,

QMASM (PAKIN, 2016) was initially published as QASM and later renamed to avoid

conflict with MIT’s QASM2 and IBM’s QASM (OpenQASM). MIT’s QASM was the first

QASM that inspired other similar languages like OpenQASM and cQASM. Released in

2005, MIT’s QASM is the language supported by qasm-tools, an open-source software

package for studying fault-tolerance quantum circuits (SOFGE, 2008b; ALIFERIS et al.,

2005). The cQASM (KHAMMASSI et al., 2018) language was born with the initiative

to create a common quantum assembly language, opposing the diverse MIT’s QASM

dialects.

3.3.2 Quantum Circuit Description Languages

Quantum Circuit Description Languages (QCDL) are higher-level quantum pro-

gramming languages with semantics limited to the quantum circuit model of quantum

computation (NIELSEN; CHUANG, 2010b). This limitation impacts the classical con-

trol of a quantum execution, shortening how dynamic and generic a quantum program

can be. For example, a quantum program in a QCDL cannot dynamically execute for

statements. However, as implemented in ScaffCC (JAVADIABHARI et al., 2014) (the

Scaffold optimizing compiler), this does not prohibit the compiler from performing a

loop-unrolling during the translation process. It is worth mentioning that the quantum

circuit model of computation is Turing-complete (MOLINA; WATROUS, 2019), meaning

that it can describe any computable problem.

Scaffold (JAVADIABHARI et al., 2014) and Quipper (GREEN et al., 2013) mark

the resurgence of quantum programming languages. Both of them focus on quantum

circuit synthesis but from different perspectives. The Scaffold language is a C-like

language that can compile classical operation into a quantum circuit; Quipper is a
1 QMASM uses Ocean SDK, although it is not part of the D-Wave’s plataform.
2 https://www.media.mit.edu/quanta/quanta-web/projects/qasm-tools/

Chapter 3. Quantum Programming 41

Haskell-embedded language for the scalable description of potentially long quantum

circuits. Scaffold and Quipper, respectively released in 2012 and 2013, are the first

relevant quantum programming language after the pioneer QCL language (ÖMER,

2005), published in 1998 (ÖMER, 1998).

Quantum circuit is a widespread quantum computing model used in most quan-

tum computers, and therefore the more accessible paradigm for quantum execution.

QCDLs can also benefit from the vast literature for quantum circuit compilation and op-

timization (SIRAICHI et al., 2018; KISSINGER; WETERING, 2020; BHATTACHARJEE

et al., 2019).

Since quantum programs written in a QCDL have the size and classical values

fixed, they can be strongly optimized and their execution highly parallelable (JAVADIAB-

HARI et al., 2014). Also, there is no need for runtime optimizations, such as branching

prediction and runtime qubit allocation (JAVADIABHARI et al., 2014). However, the

limited expressiveness of QCDLs also limits classical-quantum interactions.

3.3.3 Classical-Quantum Programming Languages

Classical-Quantum Programming Languages (CQPL) are high-level program-

ming languages that allow any combination of classical control and quantum operations,

including dynamic loops controlled by quantum measurements. Examples of quantum

constructions enabled by control flow are: qubits reuse through runtime qubit allocation

and deallocation (RISTÈ et al., 2012); implementation of quantum communication pro-

cesses like quantum teleportation (BENNETT et al., 1993); use of interactive quantum

applications like non-deterministic quantum gate decomposition (BOCHAROV et al.,

2015) and iterative quantum phase estimation (KITAEV, 1995).

The expressivity gain of CQPLs over QCDLs makes it easier to integrate classical

and quantum algorithms, which can boost the development of hybrid classical-quantum

applications. However, it comes at the cost of optimization. Classical control flow splits a

quantum program into basic blocks, making it difficult to optimize a quantum application

as a whole like a quantum circuit. For in-block optimization, we can use the same

optimization techniques as quantum circuit optimization.

For languages like Q# (SVORE, K. et al., 2018) that allow dynamic allocation

of qubits, mapping a logical qubit to a physical one at runtime is another challenge.

Quantum computer realization, such as superconductor qubits, organize qubits in a

topology where qubits do not directly communicate with all other qubits, which makes

mapping of logical qubits to physical ones a not straightforward process.

Today’s quantum computer has limited support to control flow which limits the

full implementation of CQPLs. Also, many CQPLs consider that a quantum computer is

a coprocessor with real-time communication, but it is not the case for NISQ computers

that are cloud-based batch processors.

Chapter 3. Quantum Programming 42

The language Q# introduces the quantum-specific construction repeat-until-

success (BOCHAROV et al., 2015). This loop statement has a body scope that ex-

ecutes every iteration, a stop condition, and a fixup code that runs whenever the stop

test fails. We cannot implement this construction in QCDLs. The within-apply is another

Q# quantum-specific construction. This statement is composed of a within and a apply

scopes, which execute as follows: within → apply → inverse within.

FJQuantum (FEITOSA et al., 2016) is a quantum programming language that

escapes from the quantum gate model. Instead, it uses conditional construction to

implement quantum operations. However, FJQuantum makes it hard to compile a code

to a gate-base quantum computer. The only other quantum programming language

that uses quantum operations other than quantum gates is the Silq (BICHSEL et al.,

2020) language, which uses constructions that implicitly create auxiliary qubits and

automatically use inverse quantum computation to release them. However, Silq uses

quantum gates to define this behavior, making it easy to compile the language to a

gate-based quantum computer.

Chapter 4. Proposed Runtime Architecture 44

plication, including qubit allocation, quantum gate application, including inverted and

controlled, measurement, and quantum computer’s control flow. Libket is a C++ library

that can be used standalone to implement classical-quantum applications and tools.

For instance, we implement a Python wrapper of Libket for the Ket interpreter. So the

Ket Program can be either written in C++ and linked with Libket or written directly in the

Ket language.

Libket uses the calls performed by the classical-quantum application to generate

a quantum code in the Ket Quantum Assembly (KQASM) language, which is an inter-

mediary representation, which is not necessarily equivalent to a quantum circuit. As the

quantum code is independent of the quantum execution target, KQASM has no preset

limit of qubits and connectivity layout, acting on logical qubits. We designed KQASM to

take advantage of Ket Bitwise Simulator (Section 4.3), supporting adding an arbitrary

number of control qubits to any single-qubit quantum gate and using labels and branch

instructions, similar to Quil, to implement control flow.

KQASM has a basic block structure similar to the LLVM IR (LLVM PROJECT,

2021), where every block starts with a label and ends with a jump or branch instruction,

except the last block that ends in the end-of-file. We present the context-free grammar

of KQASM in Code 4.1.1. We can see that KQASM, and so Libket, has native support

for all single-qubits gates of Table 3, including their controlled version.

Libket has three main classes, process, quant, and future. The process class

handles every quantum operation and the interaction with others components of the

runtime architecture. However, we did not plan for a programmer to create and access

directly the process variables. Instead, it must be handled by other classes and func-

tions. The quant class handles qubit allocation and deallocation, storing and managing

a list of qubit opaque references. The future class stores a reference for a classical

64-bits signed integer located in the quantum computer. A quantum computer can gen-

erate a classical integer in three ways: quantum measurement, constant value in the

quantum code, or classical binary operation. The integer value of a future variable is

only available for the classical computer after the quantum execution.

Libket can produce multiple unrelated quantum codes concurrently. This feature

can help quantum programming dynamism and quantum execution performance. For

example, considering that we want to use an actual random number generated by a

quantum computer as input of a quantum algorithm, we can initialize a second quantum

code independent of the main one to produce the random value. This approach reduces

the number of qubits and (consequently) gates required to run the quantum application

by splitting it into several quantum executions. To implement this behavior, Libket uses a

global stack of process variables. Every Libket class and function always communicates

with the top process variable. And unlike a programming language scope, a process

variable does not have access to the process variable below in the stack. To stack

Chapter 4. Proposed Runtime Architecture 45

Code 4.1.1 ± Ket Quantum Assembly language ANTLR grammar.

1 grammar kqasm;

2

3 start : block* end_block;

4 block : label (instruction ENDL+)* end_inst ENDL+;

5 end_block : label (instruction ENDL+)*;

6 label : 'LABEL' LABEL ENDL+;

7 instruction : ctrl? gate_name arg_list? QBIT # gate

8 | ctrl? 'PLUGIN' '!'? name=STR qubits_list ARGS # plugin

9 | 'ALLOC' 'DIRTY'? QBIT # alloc

10 | 'FREE' 'DIRTY'? QBIT # free

11 | 'INT' result=INT left=INT bin_op right=INT # bin

12 | 'INT' INT '-'? UINT # const

13 | 'SET' target=INT from=INT # set

14 | 'MEASURE' INT qubits_list # measure

15 | 'DUMP' qubits_list # dump

16 ;

17 end_inst : 'BR' INT then=LABEL otherwise=LABEL # branch

18 | 'JUMP' LABEL # jump

19 ;

20 ctrl : 'CTRL' qubits_list ',';

21 qubits_list : '[' QBIT (',' QBIT)* ']';

22 gate_name : 'X'|'Y'|'Z' |'H'|'S'|'SD'|'T'|'TD'|'P'|'RZ'|'RX'|'RY';

23 arg_list : '(' DOUBLE (',' DOUBLE)* ')';

24 bin_op : '=='|'!='|'>' |'>='|'<' |'<=' |'+' |'-'

25 | '*' |'/' |'<<'|'>>'|'and'|'xor'|'or'

26 ;

27

28 ADJ : '!'; ARGS : '\"'~["]+'\"';

29 DIRTY : 'DIRTY'; UINT : [0-9]+;

30 QBIT : 'q'UINT; INT : 'i'UINT;

31 DOUBLE : '-'?[0-9]+'.'[0-9]*; ENDL : '\r''\n'?|'\n';

32 LABEL : '@'STR; SIG : '-';

33 STR : [a-zA-Z]+[._0-9a-zA-Z]*; WS : [\t]+ -> skip;

up and pop a process variable, Libket uses the process_begin() and process_end()

functions, respectively.

The main features of the shared library are the ability to generate the quan-

tum code at runtime and that measurements return a future variable that represents

a promise for the results. Those two features are essential for Ket’s ability to execute

generic quantum applications with the dynamic interaction between classical and quan-

tum computers.

Chapter 4. Proposed Runtime Architecture 46

4.1.1 Runtime Quantum Code Generation

Due to decoherence, every quantum operation needs to be highly optimized.

Therefore, it is discouraged to send to a quantum computer a parameterized quantum

execution, where the classical computer can define the input. For example, Shor’s

algorithm needs to perform modular exponentiation on a superposition taking a state

|x⟩ |0⟩ into |x⟩ |ax mod N⟩, where a and N are classical parameters. We can optimize

this operation for every classical parameter if we statically define the values, but this

strategy does not allow interactive execution. Libket’s approach for this problem is to

delay the quantum code generation for the classical runtime where every parameter is

available. This way, we can define a generic Ket program using any classical control

needed, and the KQASM code will have only the necessary operations.

Besides enabling the description of parameterized quantum applications, as

described above, the generation of quantum code at runtime also permits programming

responsive quantum applications, which change their execution based on user input,

sensor measurement, or quantum execution. For example, a program that returns the

prime factors for a user inputted number and a quantum code that uses a measurement

result as input.

4.1.2 Delayed Execution

Some quantum applications, e.g., the quantum teleportation of Figure 6, uses

measurement results to control the application of quantum gates. Considering that the

quantum computer’s decoherence time may be shorter than the response time between

the classical and the quantum computers, it is up to the quantum computer to handle

this control instead of the classical computer. It is in this context that measurement

results as a future variable takes place.

Figure 6 ± The quantum teleportation circuit, where |β00⟩ = |00⟩+|11⟩√
2

. The last two

quantum gates Z and X are controlled by the measurement result of the top
two qubits.

|ψ⟩ • H •
•
X Z |ψ⟩

⎧

⎨

⎩

|β00⟩

Inspired by concurrent programming, when a program calls for a measurement,

the shared library returns a future variable instead of the measurement result. A future

variable holds a promise for a measurement result that is fulfilled by Libket when the

classical computer needs the value. However, this promise accomplishment implies the

Chapter 4. Proposed Runtime Architecture 47

Code 4.1.2 ± An if statement that runs on the quantum computer, implemented in Ket
(left) and C++ using Libket (center), and the generated KQASM (right).

Ket
1 q = quant(2)

2 H(q[0])

3 if measure(q):

4 X(q[1])

Libket (C++)
1 quant q{2};

2 H(q(0));

3 label then{"then"};

4 label end{"end"};

5 auto test = measure(q);

6 branch(test, then, end);

7 then.begin();

8 X(q(1));

9 jump(end);

10 end.begin();

KQASM
1 LABEL @entry

2 ALLOC q0

3 ALLOC q1

4 H q0

5 MEASURE i0 [q0]

6 BR i0 @then0 @end1

7 LABEL @then0

8 X q1

9 JUMP @end1

10 LABEL @end1

execution of the quantum code. With future variables, it is possible to use measure-

ment results in control flow since Libket can place them in the quantum code for the

quantum computer to execute. In code 4.1.2, we present an if statement that runs in the

quantum computer. In the Ket language, we integrate the future class with the Python

if declaration. Using Libket with C++, we can end and begin a basic block with the

functions branch() and jump(), and the method begin of the label class, respectively.

A future variable can hold other information that is not necessarily a measurement

result but is only available in the quantum computer, e.g., the result of expressions with

measurement results and loop control variables.

The quantum code execution is the last action of a process. When requested by a

future variable, Libket sends the generated KQASM file to Ket Bitwise Simulator, which

returns the value of the integers, so that the process can fulfill the future variables.

4.1.3 Inverse and Controlled Operations

As quantum computation is inherently reversible, Libket can generate the adjunct

of a quantum operation inverting the order of the quantum gates and change it for its

inverse. This functionality is only available for quantum gates. To construct KQASM with

the inverse operation, Libket uses a stack of stacks of gates as following. A call to begin

an inverse section (adj_begin()) pushes an empty stack of gates. The call to end an

inverse segment (adj_end(), Code 4.1.3) has two possibilities. First, if the outer stack

has one element (lines 8-11), the inner stack pops the gates into the KQASM file (line

10); else (lines 12-15), the inner stack pops the gates into the stack below (line 14).

Inside of an inverse section, the library places the quantum gates into the top stack. If

the outer stack has an odd number of elements, the library pushes the adjunct quantum

gate instead.

Libket allows adding qubits of control to the application of any quantum gate. For

example, a CNOT gate, with qubit q0 as control and q1 as the target, in KQASM is “CTRL

Chapter 4. Proposed Runtime Architecture 48

Code 4.1.3 ± Libket implementation of adj_end.

1 // Save the inner stack in a queue

2 std::queue<std::string> tmp;

3 while (not adj_stack.top().empty()) {

4 tmp.push(adj_stack.top().top());

5 adj_stack.top().pop();

6 }

7 adj_stack.pop(); // Pop the inner stack

8 if (adj_stack.empty()) while (not tmp.empty()) {

9 // If the outer stack is empty

10 kqasm << tmp.front(); // Push into the KQASM file

11 tmp.pop();

12 } else while (not tmp.empty()) {

13 // If the outer stack is not empty

14 adj_stack.top().push(tmp.front()); // Push into the stack below

15 tmp.pop();

16 }

[q0], X q1º, and a Toffoli gate, with qubits q0 and q1 as control and q2 as the target,

is “CTRL [q0, q1], X q2º. To apply a controlled operation, first, Libket needs to open

a controlled scope pushing control qubits to a stack using the ctrl_begin() function,

then call the quantum operation. It is possible to stack more control qubits inside the

scope with successive ctrl_begin() calls. The ctrl_end() function ends the last open

controlled section popping its control qubits. It is possible to open a controlled scope

inside an inverse section, and vice versa.

4.1.4 Dump & Metrics

Although it is not possible in quantum hardware execution, only on simulation,

Libket allows returning the quantum state of qubits with the dump class. As the integer of

future variables, the value of a dump is available only after the quantum execution. When

simulating a quantum execution, a dump instance can implement fake measurements

that do not collapse the quantum state or emulate infinite measures. However, a dump

cannot influence a quantum execution since it has no side effects. TODO DEBUG

The function report() returns a metrics instance with information on the current

state of the KQASM on the actual process. The metrics include the number of qubits

allocated/deallocated/measured, single-qubit/controlled gates used, and Ket Bitwise

plugins applied. Libket can only return the KQASM metrics before the quantum execu-

tion because, after that, Libket destroys the process and, consequently, the KQASM

file.

Chapter 4. Proposed Runtime Architecture 49

4.1.5 Libket CLI

Every application linked with Libket, including the Ket language interpreter, pro-

vides the command line interface of Figure 7. Libket will show every quantum code

sent to the execution into a file when set by the —-out flag. Alternatively, with the

—-no-execute flag, Libket will not send the KQASM code execution, setting every future

variable to 0.

Ket program options:

-h [--help] Show this information.

-o [--out] KQASM output file.

-s [--kbw] (=127.0.0.1) Quantum execution (KBW) address.

-p [--port] (=4242) Quantum execution (KBW) port.

--seed Set RNG seed for quantum execution.

--api-args Additional parameters for quantum

execution.

--no-execute Does not execute KQASM, measurements

return 0.

--dump-to-fs Use the filesystem to transfer dump

data.

Figure 7 ± Libket Command Line Interface

To execute the quantum code, Libket sends an HTML GET with the KQASM

encoded in application/x-www-form-urlencoded on the request’s body. Then the Ket

Bitwise Simulator server runs the KQASM code and returns a JSON file with dump

states if any, and the integer values to fulfill the future variables. Unless the flags —-kbw

and —-port are set, Libket sends the request to localhost port 4242. By default, KBW

sends the dump states encoded in Base64. With the flag —-dump-to-fs, KBW will dump

the quantum state to a temporary file and send the path to Libket.

When Libket sends a seed to KBW with the —-seed flag, the quantum execution

is deterministic, making the execution of two equal Ket programs return the same

measurement results. Although it has no use in the Ket Bitwise Simulator server, the

flag —-api-args append URL parameter to HTML request.

4.2 QUANTUM GATE DECOMPOSITION

The transpiler performs source-to-source translation with quantum gate decom-

position (ITEN et al., 2016; VARTIAINEN et al., 2004) and architecture-independent

optimizations (KISSINGER; WETERING, 2020; NAM et al., 2018) to prepare the quan-

tum code for quantum hardware execution or to estimate the resources needed for the

quantum execution. The input and output languages can be the same, with just the

decomposition of the multi-controlled quantum gates.

Chapter 4. Proposed Runtime Architecture 50

The Ket Quantum Assembly (KQASM) language is more expressive than the

available quantum computers, limiting the execution of a Ket application. However, we

can easily translate a subset of KQASM to OpenQASM and Quil for quantum hardware

execution.

4.3 KET BITWISE SIMULATOR: QUANTUM SIMULATOR

Although some small quantum computers are freely accessible through the In-

ternet, simulating one is helpful to test and debug quantum applications, even with the

exponential complexity of the problem. Besides the need to wait in a queue, a quantum

hardware execution is subject to noise that can invalidate the computation, interfering

even with short instances of some quantum algorithms. On the other hand, simulated

quantum executions do not need to comply with some quantum limitations, like the

impossibility to check into the superposition and qubits connectivity (a construction con-

straint). Today, simulated execution can be better than quantum hardware execution to

validate the concept of a quantum algorithm due to decoherence. We argue that even

with large-scale fault-tolerant quantum computers, there will be a need for quantum

simulators for quantum debugging and learning purposes.

Ket Bitwise Simulator (KBW) uses the Bitwise representation. In contrast to the

usual approach that uses matrix multiplication and linear algebra to handle quantum

numeric simulations, the Bitwise representation uses a hashmap to store the quantum

state and bitwise operations to apply quantum gates. In summary, KBW represents a

qubit |ψ⟩ in the hashmap qubits with the following equivalence

|ψ⟩ =
∑︂

k

αk |k⟩ ≡
∑︂

k

qubits[k] |k⟩ . (21)

For the evolution of the quantum state, KBW implements a specific function for

every quantum gate.Those implementations are independent of the number of qubits,

unlike gates stored in matrices that scale exponentially with the number of qubits. In

the Bitwise representation, KBW can apply controlled gates as fast as without control.

So quantum gate decomposition, needed for a quantum hardware execution, increases

simulation time.

The computational time of the Bitwise representation grows exponentially with

the amount of superposition in the quantum system and not with the number of qubits as

usual. However, our implementation also limits this exponential scaling by the amount

of entanglement in the quantum system, meaning that simulating a quantum system

with all qubits in superposition with sets of few entangled qubits can have up to an

exponential speedup comparing with other simulators. Inspired by the Qrack simulator

(STRANO et al., 2020), we arrange this improvement by keeping the qubits in separate

hashmaps when they are not entangled. As KBW only implements single-qubit gates,

Chapter 4. Proposed Runtime Architecture 51

besides plugins (Subsection 4.3.1), the only way to generate entanglement is by adding

control qubits to the quantum gate. However, KBW only considers that the target and

the control qubits are entangled if the control is under superposition.

4.3.1 Ket Bitwise Plugins

KBW implements all quantum gates supported by KQASM and allows user-

defined quantum gates through plugins, using the C++ Ket Bitwise API that exposes the

hashmap of the quantum simulation. In contrast to the gate decomposition of complex

quantum operations, plugins are easy and fast to implement. For example, the modular

exponentiation required by Shor’s algorithm (SHOR, 1997) has a complexity of O(N3)

(where N is the number to be factored) in terms of quantum gates (VAN METER;

ITOH, 2005), requiring to perform the decomposition for every possible value of the

parameters N and a. On the other hand, with a Ket Bitwise plugin, you can efficiently

implement this operation for any classical parameter using familiar constructions.

Code 4.3.1 presents the core of the modular exponentiation plugin implemen-

tation (ket_pown.so) required by Shor’s factorization algorithm. The plugin takes the

numbers a and N as input parameters, constructing the resulting quantum state in

new_qubits (lines 7-10), iterating over the base states of qubits (line 3). The base

states of the second register are the result of binary exponentiation of a, x , and N (lines

4-6).

Code 4.3.1 ± Core of libket_pown.so plugin. |x⟩ |0⟩ → |x⟩ |ax mod N⟩.

1 // L = ⌈log2 N⌉; size = 3 × L + 1
2 map new_map;

3 for (auto &i : qubits) { // qubits =
∑︁

x αx |x⟩ ⊗ |0⟩⊗L

4 auto reg1_reg2 = i.first[0] & ((1ul << size)-1); // = |x⟩ |0⟩
5 auto reg1 = reg1_reg2 >> L; // = |x⟩
6 auto reg2 = pown(x, reg1, N); // = |ax mod N⟩
7 reg1_reg2 |= reg2;

8 auto idx = i.first;

9 idx[0] = reg1_reg2;

10 new_qubits[idx] = i.second; // new_qubits += αx |x⟩ |ax mod N⟩
11 }

12 qbits.swap(new_map); // qubits =
∑︁

x αx |x⟩ |ax mod N⟩

4.3.2 Benchmark

As the simulation time depends on the amount of superposition and entangle-

ment of the quantum system, we propose four benchmarks to test the KBW perfor-

mance. We run the benchmarks against the quantum simulators of Table 6, with the

Chapter 4. Proposed Runtime Architecture 52

Table 6 ± Quantum simulators used in the Benchmarks.

Simulator Version Reference

Cirq 0.11.1 Developers (2021)
Forest QVM 1.17.2 Smith et al. (2017)

ProjectQ 0.7.0 Steiger et al. (2018)
Q# 0.18 Krysta Svore et al. (2018)

QSystem 1.2.0 Rosa and Taketani (2020)
Qiskit-Aer 0.8.2 ANIS et al. (2021)

Qrack 5.4.0 Strano et al. (2020)
QuEST 3.2.1 Jones et al. (2019)

Table 7 ± Computer setup used in the benchmarks.

Model

CPU Intel(R) Core(TM) i7-8565U
RAM 2x 8GB DDR4 (Speed: 2667 MT/s)
Linux 5.13.9-arch1-1

setup of Table 7. All experiments consist of a state preparation with qubits initialized in

|0⟩, followed by the measurement of all qubits.

The first benchmark is a GHZ state preparation, entangling all qubits in a super-

position of only two base states.

GHZ =
1√
2

(︁

|0⟩⊗n + |1⟩⊗n)︁ (22)

As shown in Figure 8a, since the qubits are at two quantum states on every compu-

tation step, KBW has a linear scale as QSystem, the original implementation of the

Bitwise representation (ROSA; TAKETANI, 2020). We see a similar result in the W state

preparation benchmark (Figure 8b),

W =
1√
n

(|100 . . . 0⟩ + |010 . . .⟩ + |001 . . . 0⟩ + · · · + |000 . . . 1⟩) (23)

where the number of base states in superposition is linear with the number of qubits.

The third benchmark applies a Quantum Fourier Transformation (QFT), leaving

the qubits in a superposition of 2n base states. However, since the initial state is |0⟩,
the final quantum state

|ψ⟩ =
1√
2n

2n±1
∑︂

k=0

|k⟩ (24)

has no entanglement, allowing KBW to store the qubits in separated spaces. In Figure

8c, we see a linear scale similar to Qrack, as expected.

The last benchmark is the worst case for KBW, where we have all qubits entan-

gled in total superposition. This experiment first prepares a GHZ state then applies a

Chapter 4. Proposed Runtime Architecture 56

computers have limited control flow support that restricts the KQASM code execution.

Although, we expect that quantum computers will overcome this restriction soon.

4.5 CONSIDERATIONS

The proposed runtime architecture provides the means for the dynamic hybrid

classical-quantum programming and execution of the Ket language. With its core com-

ponent, the shared library Libket, we meet the two first specific objectives of this work.

To mitigate the interaction limitation between classical and quantum computers, Libket

introduces the future variables to delay the quantum execution, allowing Ket to inte-

grate it with the classical Python construction if and while. To support generic quantum

programming and dynamic quantum execution, minimizing the number of quantum op-

erations and classical control in the KQASM code, Libket uses the classical runtime to

generate the quantum code.

With the quantum computer simulator Ket Bitwise Simulator, we meet the fourth

specific objective of this work. The KBW implementation fits in the quantum execution

scenario of Section 1.3, processing in batch, not supporting interaction during the quan-

tum computation. Also, we implemented KBW to run in the cloud, accessible to Libket

through a REST API. As presented in the QFT benchmark (Figure 8c), KBW improves

the Bitwise representation by keeping the qubit states split when not entangled, leading

to an exponential speed-up when limiting the amount of entanglement of the quantum

system.

57

5 KET: A NOVEL QUANTUM PROGRAMMING LANGUAGE

Ket is a Python-embedded classical-quantum programming language that friendly

exposes the Libket functionalities enabling dynamic quantum programming in an ar-

chitecture suitable for the current and near-future quantum computers. As a high-level

quantum programming language, Ket lets you quickly develop and test quantum algo-

rithms and applications using the powerful Python syntax with the addition of a few

quantum specific constructions. This approach should be a natural way for Python

programmers to start with quantum programming, smoothing the learning of quantum

computation and leveraging quantum software development.

Briefly, Ket provides three types/classes for quantum programming, a universal

set of single-qubit quantum gates, constructions for controlled and inverse quantum

operations, and quantum computer’s classical control flow integration. In this chapter,

we present the syntax and semantics of those features with examples of use. We also

discuss the design decisions and limitations of Ket’s implementation as an embedded

language.

5.1 TYPES & QUANTUM OPERATIONS

Ket extends Python with three types designed for quantum programming: the

quant type, which implements a list of qubits opaque reference used in quantum oper-

ations; the future type that holds a reference to a 64-bits integer stored in a quantum

computer, such as a measurement result; and, the dump type that contains a snapshot

for the quantum state, useful for debugging quantum applications with a simulator.

The quant construction allocates new qubits in the state |0⟩ and returns its ref-

erence. The built-in single qubit quantum gates of Table 8 and the measure function

are the only ones that can change the quantum state. Therefore no other operation

has quantum side effects, ensuring that a quant variable manipulation does not violate

the no-cloning theorem (WOOTTERS; ZUREK, 1982) or result in a non-unitary evolu-

tion. One can index qubits of a quant variable using brackets as in a Python list and

concatenate quant variables with the addition operation.

When no longer in usage, one can free a quant variable so another quant can

allocate its qubits. Before the call for free, all qubits must be at the state |0⟩. Otherwise,

the quant variable must release the qubits as dirty. A quant can allocate dirty qubits, but

their usage may cause side effects due to previous entanglements. It is possible to use

the with statement to ensure that Libket free all qubits of a quant variable at the end of

the scope. This construction helps not leak auxiliary qubits. In code 5.1.1, we present

several examples of how to create and manipulate a quant variable. The operations of

lines 2, 4, and 5 allocate qubits, and lines 9 to 14 show several ways to index qubits

inside a quant variable. The operations of lines 23, 24, 30, and 33 are quantum gate

Chapter 5. Ket: A Novel Quantum Programming Language 58

Table 8 ± Quantum gates available in Ket.

Gate Function Effect

Pauli-X (σx) X(q: quant)
X |0⟩ = |1⟩
X |1⟩ = |0⟩

Pauli-Y (σy) Y(q: quant)
Y |0⟩ = ±i |1⟩
Y |1⟩ = i |0⟩

Pauli-Z (σz) Z(q: quant)
Z |0⟩ = |0⟩
Z |1⟩ = ± |1⟩

Hadamard H(q: quant)
H |0⟩ = 1√

2
|0⟩ + 1√

2
|1⟩

H |1⟩ = 1√
2

|0⟩ ± 1√
2

|1⟩

S S(q: quant)
S |0⟩ = |0⟩
S |1⟩ = i |1⟩

S-dagger SD(q: quant)
S† |0⟩ = |0⟩
S† |1⟩ = ±i |1⟩

T T(q: quant)
T |0⟩ = |0⟩
T |1⟩ = 1+i√

2
|1⟩

T-dagger TD(q: quant)
T † |0⟩ = |0⟩
T † |1⟩ = 1±i√

2
|1⟩

Phase phase(λ: float[, q: quant])
P |0⟩ = |0⟩
P |1⟩ = eiλ |1⟩

Rotation-X RX(θ: float[, q: quant])
RX |0⟩ = cos θ2 |0⟩ ±i sin θ2 |1⟩
RX |1⟩ = ±i sin θ2 |0⟩ + cos θ2 |1⟩

Rotation-Y RY(θ: float[, q: quant])
RY |0⟩ = cos θ2 |0⟩ ±i sin θ2 |1⟩
RY |1⟩ = ± sin θ2 |0⟩ + cos θ2 |1⟩

Rotation-Z RZ(θ: float[, q: quant])
RZ |0⟩ = e±iθ/2 |0⟩
RZ |1⟩ = eiθ/2 |1⟩

applications, and the call of line 34 free the qubit of the quant variable aux, which is

necessary because of the statement of line 25.

The build-in functions of Table 8 that implement single-qubit gates take a quant

variable as input and apply the quantum operation on every qubit of it. The gates also

return the input quant variable, allowing to chain the quantum calls, e.g.,

SHX |0⟩ =
1√
2

(|0⟩ ± i |1⟩) ≡ S(H(X(quant()))). (25)

For the parameterized quantum gates phase, RX, RY, and RZ, the input quant is optional,

and when not provided, the function return a new gate with the given angle parameter.

For example, it is possible to implement the gates Z, S, SD, T, and TD as

Z = phase(pi); S = phase(pi/2); SD = phase(-pi/2);

T = phase(pi/4); TD = phase(-pi/4)
. (26)

Chapter 5. Ket: A Novel Quantum Programming Language 59

Code 5.1.1 ± Examples of quant variable manipulation.

1 # Allocate 1 qubit

2 q = quant()

3 # Allocate 20 qubits

4 qs = quant(20)

5 # Allocate 10 dirty qubits

6 d_qs = quant.dirty(10)

7

8 # Qubit index as in Python list

9 head, tail = qs[0], qs[1:]

10 head, *tail = qs

11 init, last = qs[:-1], qs[-1]

12 *init, last = qs

13 even_qubits = qs[::2]

14 odd_qubits = qs[1::2]

15

16 # Invert qubits order

17 reverse = reversed(q)

18 # Unpack quant

19 a, b = quant(2)

20 # Concatenate quant

21 c = a+b

22

23 H(a) # Hadamard gate

24 X(b) # Pauli-X gate

25 with quant() as aux:

26 # aux must be free before

27 # the scope ends

28 with around(H, aux):

29 with control(aux):

30 swap(a, b)

31 result = measure(aux)

32 if result == 1:

33 X(aux)

34 aux.free() # Free qubit |0〉

The only way to gather classical information about a quantum state is through

measurement. The function measure(q: quant, free: bool = False) -> future

measures all qubits of a quant and returns a future that refers to the measurement

result, which is the concatenation of every resulting bit. Measurements always collapse

the quantum state, and in simulated quantum execution, the measured qubits are still

available to use. Optionally, it is possible to free the quant after the measure by setting

the argument to True.

The future variable resulting from a measure holds a promise for the measure-

ment result because the value is not immediately available for the classical computer.

To get the value from the quantum computer, first, it needs to execute the quantum

code (see Chapter 4 for more details), which is triggered by the method get of a future

or the function exec_quantum.

Any binary operation between future variables or future and int returns a new

future variable that refers to the resulting value in the quantum computer. The Python

assignment statement always overrides the variable in the classical computer, so to

overrides a variable in the quantum computer one can use the syntax:

<var>.set = <exp> (27)

In Code 5.1.2, we present ways to initialize a future variable, including the future

constructor (line 4) that passes a number to the quantum computer.

In simulated quantum execution, it is possible to take a snapshot of the quantum

state and store it in a dump variable. It can come in handy for debugging a quantum

application or helping to understand a quantum algorithm. The non-cloning theorem

Chapter 5. Ket: A Novel Quantum Programming Language 60

and the impossibility of verifying the superposition without collapsing the quantum

state make it impossible to implement this feature in quantum hardware. Like a future

variable, the result of a dump is available only after the quantum execution. Making the

dump of a quant has no side effects in the quantum execution, but the dump value can

easily take many gigabytes of memory.

A dump variable can simulate multiples measurements to speed the simulation of

quantum algorithms that need to run several times to take a measurement statistic. In

code 5.1.3, we present a commented example of dump usage.

Every operation performed in the quantum computer is attached to a process,

which one can create using the with run() statement. Ket allows to nest process,

but as they are a separated quantum execution, there is no communication between

them (like a scope in programming languages). The operations performed outside of a

with-run statement communicates with the global process, initialized at the program

startup.

5.2 CONTROLLED OPERATIONS

In addition to the single-qubit gates of Table 8, Ket provides the CNOT and

SWAP gates. However, those are not built-in gates, instead, they are adding qubits

of control to the available single-qubit gates. In code 5.2.1, we present a possible

implementation of the CNOT gate using the ctrl(ctl: quant, func, *args) function

to add control qubits to the Pauli-X gate (line 4). To implement multi-qubits gates,

Ket allows adding multiples control qubits to any quantum gate or callable using the

mentioned ctrl and the with control(*ctl: quant[, on_state]) statement. This

feature is enough to implement complex multi-qubits quantum operations. For example,

the Quantum Fourier Transformation of Code 5.2.2 uses only single-qubit gates and

the with-control construction to call a controlled-phase gate (lines 8-9).

The with-control is the quantum analog for the if-then classical statement,

applying the quantum operations only when the control qubits are in a given state,

taking into account the quantum superposition. By default, the quantum computer

only performs the quantum operations if all control qubits are in state |1⟩. Ket allows

Code 5.1.2 ± Examples of future initialization.

1 q = H(quant(10))

2 a = measure(q) # New future from measure

3 b = m*2 # New future from a binary operation

4 c = future(42) # New future from a given value

5 a.set = b+c*3 # Overwrite the value on the quantum computer

6 exec_quantum() # Get the values from the quantum computer

Chapter 5. Ket: A Novel Quantum Programming Language 61

Code 5.1.3 ± Example of dump usage.

1 q = quant(3)

2 ctrl(H(q[:-1]), X, q[-1])

3 d = dump(q)

4 states = d.states() # Get the basis states of q, [0, 2, 4, 7]

5 print('Number of basis states:', len(states))

6 #Number of basis states: 4

7 print('The amplitude of state |111〉:', d.amplitude(0b111))

8 #The amplitude of state |111〉: (0.4999999999999999+0j)

9 print('Probability of measure state |000〉:', d.probability(0))

10 #Probability of measure state |000〉: 0.2499999999999999

11 print(d.show('b2')) # Print the state, separate the two first qubits

12 #|00〉|0〉 (25%)

13 #0.5 ∼= 1/
√
4

14 #

15 #|01〉|0〉 (25%)

16 #0.5 ∼= 1/
√
4

17 #

18 #|10〉|0〉 (25%)

19 #0.5 ∼= 1/
√
4

20 #

21 #|11〉|1〉 (25%)

22 #0.5 ∼= 1/
√
4

Code 5.2.1 ± Possible implementation of the CNOT gate in Ket.

1 def cnot(ctl : quant, trg : quant):

2 # CNOT ctl[i], trg[i]

3 for c, t in zip(ctl, trg):

4 ctrl(c, X, t)

modifying this behavior with the keyword argument on_state that changes the control

state. As we assumed that the quantum computer only controls in state |1 . . . 1⟩, to

change the control state, before calling for controlled operation, Ket takes the desired

control state to |1 . . . 1⟩ and inverse this permutation after the call.

Controlled operations can generate entanglement if the control qubits are in

superposition with a control state. For example, in Code 5.2.3, the quant ctl is in a

superposition of the states |0⟩ (the control state, defined in line 3) and |1⟩, taking the

quant trg in a superposition where the Pauli-X gate was applied and was not applied

(lines 3-4). As the two qubits are entangled now, for example, if we measure 0 in the

control qubit, the other will collapse to a state where the operation was applied. In Code

5.2.3, line 16, we see that in this particular execution, the measurement of the control

Chapter 5. Ket: A Novel Quantum Programming Language 62

Code 5.2.2 ± Quantum Fourier Transformation (QFT) in ket.

1 def qft(q : quant, invert : bool = True) -> quant:

2 if len(q) == 1:

3 H(q)

4 else:

5 head, *tail = q

6 H(head)

7 for i in range(len(tail)):

8 with control(tail[i]):

9 phase(2*pi/2**(i+2), head)

10 qft(tail, invert=False)

11

12 # At the end of this Quantum Fourier Transformation, the qubits are

13 # in the reversed order. Depending on the algorithm, swapping the

14 # qubits reference is enough.

15 if invert:

16 for i in range(len(q)//2):

17 swap(q[i], q[len(q)-i-1])

18 return q

19 else:

20 return reversed(q)

qubit returned 1, collapsing the quant trg to not applied.

Except for qubit allocation, deallocation, measure, and classical operation in the

quantum computer, e.g., future.set, any other instruction is allowed inside a controlled

scope, even call functions that call other controlled gates. Same for the ctrl, which adds

qubits of control to a callable. With the function ctrl, it is also possible to create a new

controlled quantum gate that takes a quant as input. For example, we can implement a

multi-controlled-not gate that uses the first qubits of a quant variable to control the last

as “mcnot = ctrl(slice(0, -1), X, -1)º. For this construction, the quantum gate or

function must take only a quant as input and call ctrl with the signature:

(ctl : int | slice, gate, trg : int | slice) -> Callable[[quant], quant]

(28)

5.3 INVERSE OPERATIONS

As quantum computation is intrinsically reversible and several quantum algo-

rithms use inverse quantum operations, Ket provides means for calling functions in-

verted, facilitating inverse quantum gates application. For example, to apply an Inverse

Quantum Fourier Transformation needed for Shor’s factorization algorithm, we can use

the adj(func, *args) function to call the inverse of the QFT implemented in Code 5.2.2.

Chapter 5. Ket: A Novel Quantum Programming Language 63

Code 5.2.3 ± Entangling qubits with a controlled operation.

1 ctl = H(quant()) # = 1/
√
2(|0〉 + |1〉)

2 trg = quant() # = |0〉

3 with control(ctl, on_state=0):

4 X(trg) # 1/
√
2(|0, X(trg)〉 + |1, trg〉)

5

6 before_measure = dump(ctl+trg)

7 measure(ctl) # |1, trg〉, collapse to not applied

8 after_measure = dump(ctl+trg)

9 print(f"Before the measure:\n{before_measure.show('b1:b1')}")

10 #Before the measure:

11 #|0〉|1〉 (50%)

12 #0.707107 ∼= 1/
√
2

13 #

14 #|1〉|0〉 (50%)

15 #0.707107 ∼= 1/
√
2

16 print(f"After the measure:\n{after_measure.show('b1:b1')}")

17 #After the measure:

18 #|1〉|0〉 (100%)

19 #1 ∼= 1/
√
1

Alternatively, it is possible to implement an Inverse Quantum Fourier Transformation,

writing the QFT implementation inside a scope started by a with inverse() statement,

as in Code 5.3.1.

Code 5.3.1 ± Inverse Quantum Fourier Transformation (IQFT) in ket.

1 def iqft(q : quant):

2 with inverse():

3 for i in range(len(q))

4 head, tail = q[i], q[i+1:]

5 H(head)

6 for j in range(len(tail)):

7 with control(tail[j]):

8 phase(2*pi/2**(j+2), head)

9 for i in range(len(q)//2):

10 swap(q[i], q[len(q)-i-1])

The adj function allows creating an inverse quantum operation from a callable.

For example, it is possible to implement the gates SD and TD and the operation IQFT as

SD = adj(S); TD = adj(T); iqft = adj(qft) . (29)

Chapter 5. Ket: A Novel Quantum Programming Language 64

A usual construction of quantum algorithms is VUV †, where U and V are uni-

tary operators (quantum gates), and V† is the inverse of V . For example, a possible

implementation for Grover’s diffusion operator is VUV †, with U = XH and V = Multi-

controlled-Z. In Ket, we can implement this operator with the with around(func, *args)

statement (see Code 5.3.2). Using the with-around construction, the operators U and

V are, respectively, the new scope and the arguments. We implement this statement

inspired by the within-apply construction of Q# that has a similar semantic.

Code 5.3.2 ± Grover’s diffusion operator in Ket.

1 def grover_diffusion(q : quant):

2 with around([H, X], q): # start: H(X(q))

3 ctrl(q[1:], Z, q[0]) # end: adj([H, X], q)

We can use the with-around statement to remove entanglement with auxiliary

qubits. For example, in Code 5.3.3, the with-around of line 9 starts entangling the pri-

mary qubits with the auxiliary ones; and where the scope ends, the statement removes

the entanglement applying the inverse operation. Except for qubit allocation, dealloca-

tion, measure, and classical instructions in the quantum computer, e.g., future.set,

it is possible to invert any other instruction. Controlled and inverse operations can

interoperate without restrictions.

Code 5.3.3 ± Oracle |x⟩ |y⟩ → |x⟩ |f (x) ⊕ y⟩, where f (x) = 1 if x is periodic, else f (x) = 0.

1 def evaluate_periods(query : quant, aux : quant):

2 for period in range(1, len(aux)+1):

3 with around(ctrl(query[i+period], X, query[i], later_call=True)

for i in range(len(query)-period)):↪→

4 with control(query[:len(query)-period], on_state=0):

5 X(aux[period-1])

6

7 def oracle(x : quant, y : quant):

8 with quant(len(x)//2) as aux:

9 with around(evaluate_periods, x, aux):

10 with control(aux, on_state=0):

11 X(y)

12 X(y)

13 aux.free()

Chapter 5. Ket: A Novel Quantum Programming Language 65

5.4 QUANTUM COMPUTER’S CONTROL FLOW

We can split the Ket execution into classical and quantum runtime. As presented

in Section 4.1, Libket generates the quantum code in the classical runtime using quan-

tum and classical operations, including classical conditional statements. When using

a future variable as the test for an if-then-else or a while statement, Ket cannot

execute those in the classical runtime since the value is not available for the classical

computer yet. So, Libket constructs the semantics of the statements in the quantum

code to execute in the quantum runtime. The integration of the type future with the

Python statements if-then-else and while enables programming the classical con-

trol flow in the quantum computer, as if the values were in the classical computer.

This approach seamlessly integrates the quantum computer’s control flow in a hybrid

classical-quantum programming architecture that respects the limitations of the sce-

nario of Section 1.3.

The Quantum Teleportation protocol (Figure 6) is an example of an application

that uses measurement results to control the application of quantum gates. In Code

5.4.1, we present a Quantum Teleportation implementation in Ket (left) and the quantum

code generated at runtime (right). On the left, lines 17-22, we see the measurements

of lines 15 and 16 controlling the application of the gates Pauli-X and Pauli-Z. Note that

the measurement result is not available in the classical computer at this time, but we

use the same syntax as if it was. On the left, lines 11-24, we see that Libket placed

the semantics of lines 17-22 in the KQASM code, moving the execution of the if-then

statement to the quantum computer. Also, note that the if-then instructions of the

bell function (left, line 3-6) are not present in the KQASM code since the values of

the tests are available in the classical computer when called in line 12. However, if the

parameters x and/or y of the function bell are the type future, Ket would tell Libket to

place those if-then statements in the quantum code.

In code 5.4.1, left, the number in the comments matches the generated line in the

KQASM code (right). The future variables m0, m1, and result refer to the registers i0,

i1, and i6, respectively, on the quantum code, and the quant variables alice, alice_b,

bob refer to the qubits q0, q1, and q2. The KQASM code only executes in line 28,

triggered by the method get of the future result.

Ket also integrates the Python while-else1, continue, and break statements in

the quantum computer. Code 5.4.2 present an example of a while and if-then-else

statements that executes on the quantum computer to prepare a quantum state using

postselection. In the left code, the number in the comments matches the generated line

in the KQASM code (right). The future variables ok and res refer to the registers i0,

and i3, respectively, on the quantum code, and the quant variables q and aux refer to
1 Python allows an optional else clause that executes if the loop does not end with a break statement.

Chapter 5. Ket: A Novel Quantum Programming Language 66

Code 5.4.1 ± Quantum Teleportation implemented in Ket.
Ket

1 def bell(x, y) -> quant:

2 q = quant(2) # 3-4

3 if x == 1:

4 X(q[0])

5 if y == 1:

6 X(q[1])

7 H(q[0]) # 5

8 ctrl(q[0], X, q[1]) # 6

9 return q

10

11 def teleport(alice) -> quant:

12 alice_b, bob = bell(0, 0)

13 ctrl(alice, X, alice_b) # 7

14 H(alice) # 8

15 m0 = measure(alice) # 9

16 m1 = measure(alice_b) # 10

17 if m1 == 1: # 11-14

18 X(bob) # 15

19 # 16-17

20 if m0 == 1: # 18-21

21 Z(bob) # 22

22 # 23-24

23 return bob

24

25 alice = quant() # 2

26 bob = teleport(alice)

27 result = measure(bob) # 25

28 result.get() # Execute KQASM

Generated KQASM
1 LABEL @entry

2 ALLOC q0

3 ALLOC q1

4 ALLOC q2

5 H q1

6 CTRL [q1], X q2

7 CTRL [q0], X q1

8 H q0

9 MEASURE i0 [q0]

10 MEASURE i1 [q1]

11 INT i2 1

12 INT i3 i1 == i2

13 BR i3 @if.then0 @if.end1

14 LABEL @if.then0

15 X q2

16 JUMP @if.end1

17 LABEL @if.end1

18 INT i4 1

19 INT i5 i0 == i4

20 BR i5 @if.then2 @if.end3

21 LABEL @if.then2

22 Z q2

23 JUMP @if.end3

24 LABEL @if.end3

25 MEASURE i6 [q2]

the qubits q0-q1 and q2. The KQASM code only executes in line 17, triggered by the

method show of the dump d. In Appendix A, Code A.2.3 presents the same code but

using the break statement.

To tell if the statement will run in the quantum computer or the classical computer,

Ket checks the type of the test expression. If the test is an instance of the future, then

the code runs on the quantum computer; else, it runs on the classical computer. The

type checking is made at runtime since it is impossible to define the variable type a

priori in Python. To implement the semantic of the statements if-then-else and while,

the Ket interpreter uses the Python AST to make the necessary adaptations before the

execution. We present the AST transformation in Appendix A.

Chapter 5. Ket: A Novel Quantum Programming Language 67

Code 5.4.2 ± Quantum state 1√
3

(|00⟩ + |01⟩ + |10⟩) preparation with postselection.
Ket

1 q = quant(2) # 2-3

2 with quant() as aux: # 4

3 ok = future(False) # 5

4 while ok != True: # 6-11

5 H(q) # 12-12

6 ctrl(q, X, aux) # 14

7 res = measure(aux) # 15

8 if res == 0: # 16-19

9 ok.set = True # 20-21

10 # 22

11 else: # 23

12 X(q+aux) # 24-26

13 #27-28

14 # 29-30

15 aux.free() # 31

16 d = dump(q) # 32

17 print(d.show()) # Execute KQASM

18 #|00〉 (33.3333%)

19 #0.57735 ∼= 1/
√
3

20 #

21 #|01〉 (33.3333%)

22 #0.57735 ∼= 1/
√
3

23 #

24 #|10〉 (33.3333%)

25 #0.57735 ∼= 1/
√
3

Generated KQASM
1 LABEL @entry

2 ALLOC q0

3 ALLOC q1

4 ALLOC q2

5 INT i0 0

6 JUMP @while.test0

7 LABEL @while.test0

8 INT i1 1

9 INT i2 i0 != i1

10 BR i2 @while.loop1 @while.end2

11 LABEL @while.loop1

12 H q0

13 H q1

14 CTRL [q0, q1], X q2

15 MEASURE i3 [q2]

16 INT i4 0

17 INT i5 i3 == i4

18 BR i5 @if.then3 @if.else4

19 LABEL @if.then3

20 INT i6 1

21 SET i0 i6

22 JUMP @if.end5

23 LABEL @if.else4

24 X q0

25 X q1

26 X q2

27 JUMP @if.end5

28 LABEL @if.end5

29 JUMP @while.test0

30 LABEL @while.end2

31 FREE q2

32 DUMP [q0, q1]

5.5 DESIGN DECISIONS AND LIMITATIONS

Next, we will discuss some design decisions and limitations of the Ket program-

ming language implementation.

Control: Quantum controlled operations are the quantum analog of the if-then

statement, so why does not use the Python if-then to apply controlled gates instead

of the with-control? The answer is: to avoid confusing programmers. A controlled

operation is not equal to a quantum if-then because it requires all qubits to be in

the state |1⟩ to execute, and not in a state different of |0 . . . 0⟩ to execute. So, the use

of if-then to express controlled operation could mislead programmers, hoping the

quantum program to apply the traditional semantics into the quantum state.

Chapter 5. Ket: A Novel Quantum Programming Language 68

Run: The ability to describe multiple unrelated quantum execution is essential to

program a more extensive quantum application. In the Ket programming language, it is

achieved by using the with-run statement. However, the ability to automatically attach

the operations on the quantum computer to a process based on the qubit entanglement

would increase the coding dynamism. We plan this feature for future implementations.

No-cloning theorem: As described by Wootters and Zurek (1982) in the no-

cloning theorem, we cannot copy a qubit. So, the semantic of a quantum programming

language should ensure this property. A possible strategy, implemented in QWIRE

(PAYKIN et al., 2017), is to use a linear type system on the quantum variables to

secure the no-violation of the theorem. However, Ket uses a different approach. A quant

variable holds an array of qubits reference and not the actual qubits. This perspective

allows the use of the quant type in assignment statements without the worry of the

no-cloning theorem since the language will perform it by referencing and not copying

(see Code 5.5.1 as an example).

Code 5.5.1 ± Example of the effect of an assignment with a quant.

1 a = quant(5) # a = |00000⟩
2 X(a) # a = |11111⟩
3 b = a[2:4] # b = |11⟩
4 X(b) # b = |00⟩ and a = |11001⟩

Future indexing qubits: While indexing the qubits of a quant using a future

variable would improve coding dynamics, This feature would make it impossible to iden-

tify the violation of the no-cloning theorem during the classical computer runtime. For

example, in a controlled quantum operation, we cannot ensure that a future variable is

not indexing a control qubit used as a target and vice versa.

Get: The future.get tells Libket that the local computer needs a value from the

quantum computer. Ideally, a static analysis of the source code should provide this

information, performing the get when necessary. However, this analysis would either

fail or impose a limitation in a language like Python, the Ket base-language.

Set: Since the assignment statement is essential for the Python dynamism, it

does not allow the overload of the operator (the __setattr__ does not qualify). So, Ket

provides the future.set to assign a value to a future variable. We chose not to change

the language semantics for this type.

Overhead: As Python only defines the variable types at runtime, the integration

of the future type in the statements if-then and while requires additional instructions

to identify if it will run in the classical or quantum computer. Those supplementary

operations introduce overhead on the statement execution.

A new language? Why do we not provide Ket as a Python package instead of a

Chapter 5. Ket: A Novel Quantum Programming Language 69

new language? As the integration of the future type with the Python control statements

is fundamental for our proposal, providing Ket only as a Python package would not

support it. The Ket interpreter uses the Python parser to generate the program AST

and the Python compiler to compile it. However, before sending the tree for the compiler,

the interpreter performs some additional transformations (see Appendix A for details).

You can also use Ket as a Python library (with limitation), and we provide the function

import_ket to import a Ket code as a Python module and the decorator code_ket to

handle future variables inside a Python function.

5.6 CONSIDERATIONS

With Ket, we improve over the two first specific objectives of this work that we

already met with Libket. The seamless integration of the type future with the Python

statements if-then-else and while makes easy the interaction between classical and

quantum computers; and allows generic hybrid classical-quantum programming, where

the same code can run on the classical or quantum computer depending on where the

information is. Ket also validates our proposal, which is our third specific objective.

We compare the expressivity power of Ket with Q#, a domain-specific language

that allows hybrid classical-quantum programming, but only on the quantum computer

side2. While Q# requires a general purpose classical programming language to coordi-

nate the quantum computer execution, Ket allows programming a complete classical-

quantum application with a single source code. None of the other Classical-Quantum

Programming languages in our related works (Section 3.2) allows the separation of clas-

sical and quantum code needed for the cloud-based quantum computation scenario.

Therefore, we highlight that Ket, within our related works, is the only Classical-Quantum

Programming language to support classical and quantum code separation, allowing

each code to execute on its respective architecture.

Despite the limitation of implementing Ket as an embedded programming lan-

guage, we believe that the quantum instructions added to Python interact well with the

language, diverging as little as possible from the base syntax and semantic, being a

good entry point for Python programmers in quantum programming. Ket also benefits

from all the Python codebase and tools. We also highlight the dump instruction that helps

in debugging, studying, and developing quantum algorithms.

For more Ket code examples, see in Appendix B, where we implemented some

problems of the Microsoft Q# Coding Contest in Ket, comparing with the reference

implementation in Q#.

2 The quantum computer ability to execute simple classical instructions and control flow is a prerequisite
for our proposed runtime architecture.

70

6 CONCLUSION

While quantum computers can provide exponential speedup in some problems,

some intrinsic and construction limitations difficulties the implementation of classical-

quantum applications. Due to decoherence, cloud-based quantum computers must

execute a code as fast as possible, restricting the interaction between classical and

quantum computers, making them batch processors.

Focusing on the constraints of cloud-based quantum computers and respecting

the inherent restrictions of quantum programming, we presented the Ket Classical-

Quantum Programming Language, which at runtime can generate quantum code, sep-

arating the quantum execution to run efficiently in the quantum computer. Also, making

quantum code with as minimal control flow as possible to streamline the quantum

computation.

With quantum computers processing in batch, a classical computer cannot in-

teract with a quantum computer during execution, making it difficult to use classical

information generated in the quantum computer to control the quantum execution. For

example, the following interaction is not possible: During the quantum execution, the

classical computer uses measurement results to control the application of quantum

operations. Mitigate this limitation is the first specific objective in this work.

While we can rely upon the quantum computer’s ability to execute control flow to

implement generic quantum applications, this approach increases the execution time

and the odds of decoherence. Provide generic quantum programming, keeping the

quantum execution as specific as possible is the second objective of this work.

We met the two first secondary objectives of this work with the shared library

Libket and improved our solution with the Python-embedded language Ket. With the

future variables integrated with the Python statements if-then-else and while, Ket

can seamlessly move the control flow from the classical computer to the quantum com-

puter mitigating their interaction limitation. This integration also allows programming

code that can run either in the classical and quantum computer, depending on where

the value of the test variable is available. With Libket generating the quantum code at

runtime, it can limit the quantum execution only to decisions and evaluations that the

classical computer could not do, therefore, allowing Ket to use any Python construction

to program generic classical-quantum applications. Ket implementation meets the third

specific objective of this work, validating concepts of the proposed quantum program-

ming language. Libket is C++ only, independent of Python and the Ket language, and

can be used to implement a backend for other quantum programming languages like

Silq.

To implement total support for Ket, first, a quantum computer needs to support

classical control flow. However, this is not the case for today’s NISQ computer, but we

Chapter 6. Conclusion 71

expect to see an initial control flow support shortly. Although, without control flow, Ket

and its runtime architecture are suitable for current NISQ computers.

We believe Ket to be a convenient way for Python programmers to start with

quantum computation, leveraging Python programming dynamics for qubit manipulation.

Despite Ket implementing the same low-level qubit manipulation as Q#, it is possible

to use classes to implement high-level behavior like auto uncomputation similar to Silq.

With simulated quantum execution, Ket can use dump variables as a tool to make it easy

to debug and study quantum algorithms. Even that quantum code visualization as a

quantum circuit is not implemented yet, Libket can output the KQASM code sent to

execution for inspection.

To execute the KQASM code generated by Libket, we implement the Ket Bitwise

Simulator (KBW), improving the Bitwise representation. KBW detaches the simulation

time from the number of qubits, allowing the simulation of multiple qubits in quantum

systems with a low amount of superposition or entanglement with an exponential ad-

vantage in some cases and an exponential scale similar to other simulators in the worst

case. With KBW, we meet the last specific objective of this work.

The Ket Quantum Assembly (KQASM) language takes advantage of the KBW

ability to execute any one-qubit gate with many qubits of control without the need

for quantum gate decomposition. When the controlled gate does not entangle the

control and target qubits, the simulation time only increases linearly compared with the

execution of the non-controlled gate. As KBW simulation time is independent of the

number of qubits, KQASM does not need to provide any information a priori on the total

number of qubits that KBW needs to simulate. Also, KBW can allocate and free qubits

arbitrarily.

Even that quantum simulation has a high potential for parallel execution, imple-

menting multithreading in KBW is a future work. Although, even without multithreading

to take full advantage of the available hardware, the Bitwise representation alone is

enough to enable the execution of some quantum algorithms faster and with more

qubits than other benchmarked quantum simulators. For example, Pires et al. (2021)

used 42 qubits to simulate a QAOA algorithm in a laptop in about 5min. The same sim-

ulation, with a state vector simulator, requires in the order of 242 = 4.398.046.511.104

of memory.

Ket Quantum Programming is an open-source project available at https://

gitlab.com/quantum-ket under the Apache License 2.0. For the documentation, see

https://quantum-ket.gitlab.io. We distribute the Ket interpreter (ket-lang) and Ket

Bitwise Simulator (kbw) as compiled manylinux2014 wheel in the Python Package Index

to be installed using pip.

We met all the specific objectives enumerated in Section 1.4, and the primary

objective of this work with the Ket Quantum Programming development. The proposed

Chapter 6. Conclusion 72

runtime architecture with the development of Libket fulfills the secondary objectives

O1 and O2. The Ket implementation satisfies objective O3, and Ket Bitwise Simulator

meets objective O4.

As future works, we plan for a formal specification of the Ket programming lan-

guage, extending Python’s grammar and semantics; and implement the handling of

semantic errors and errors that can occur during quantum execution. In the proposal of

the runtime architecture and the implementation of the Ket Quantum Programming, we

do not rightly address the problem of debugging quantum programs, and there is a lack

of precision in the description of the quantum hardware execution. As future works, we

also want to address the quantum debugging problem and answer the following ques-

tions: (i) With the inability to look into the superposition and the no-cloning theorem,

how to debug a quantum hardware execution? And, (ii) considering the exponential

increase in information, how to efficiently debug a simulated quantum execution? For

the second question, we believe that the dump variables are a good start point. However,

we consider that assert and visualization tools would improve debugging efficiency.

73

REFERENCES

ALIFERIS, Panos; GOTTESMAN, Daniel; PRESKILL, John. Quantum accuracy

threshold for concatenated distance-3 codes. Quantum Information and

Computation, v. 6, n. 2, p. 97±165, Apr. 2005. ISSN 15337146. DOI:

10.26421/QIC6.2-1. arXiv: 0504218 [quant-ph].

ANIS, MD SAJID et al. Qiskit: An Open-source Framework for Quantum

Computing. [S.l.: s.n.], 2021. DOI: 10.5281/zenodo.2573505.

ARUTE, Frank et al. Quantum supremacy using a programmable superconducting

processor. Nature, v. 574, n. 7779, p. 505±510, Oct. 2019. ISSN 1476-4687. DOI:

10.1038/s41586-019-1666-5.

BEAZLEY, David M. SWIG: An Easy to Use Tool for Integrating Scripting Languages

with C and C++. In: PROCEEDINGS of the 4th Conference on USENIX Tcl/Tk

Workshop, 1996 - Volume 4. Monterey, California: USENIX Association, 1996.

(TCLTK’96), p. 15.

BENNETT, Charles H.; BRASSARD, Gilles; CRÉPEAU, Claude; JOZSA, Richard;

PERES, Asher; WOOTTERS, William K. Teleporting an unknown quantum state via

dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., American

Physical Society, v. 70, p. 1895±1899, 13 Mar. 1993. DOI:

10.1103/PhysRevLett.70.1895.

BERGHOLM, Ville et al. PennyLane: Automatic differentiation of hybrid

quantum-classical computations. [S.l.: s.n.], 2020. arXiv: 1811.04968 [quant-ph].

BHATTACHARJEE, Debjyoti; SAKI, Abdullah Ash; ALAM, Mahabubul;

CHATTOPADHYAY, Anupam; GHOSH, Swaroop. MUQUT: Multi-Constraint Quantum

Circuit Mapping on NISQ Computers: Invited Paper. In: 2019 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2019. P. 1±7. DOI:

10.1109/ICCAD45719.2019.8942132.

BICHSEL, Benjamin; BAADER, Maximilian; GEHR, Timon; VECHEV, Martin. Silq: A

High-Level Quantum Language with Safe Uncomputation and Intuitive Semantics. In:

PROCEEDINGS of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation. London, UK: Association for Computing Machinery, 2020.

(PLDI 2020), p. 286±300. DOI: 10.1145/3385412.3386007.

References 74

BOCHAROV, Alex; ROETTELER, Martin; SVORE, Krysta M. Efficient Synthesis of

Universal Repeat-Until-Success Quantum Circuits. Phys. Rev. Lett., American

Physical Society, v. 114, p. 080502, 8 Feb. 2015. DOI:

10.1103/PhysRevLett.114.080502.

CHEN, Zhao-Yun; GUO, Guo-Ping. QRunes: High-Level Language for

Quantum-Classical Hybrid Programming. [S.l.: s.n.], 2019. arXiv: 1901.08340

[quant-ph].

CROSS, Andrew W.; BISHOP, Lev S.; SMOLIN, John A.; GAMBETTA, Jay M. Open

Quantum Assembly Language. [S.l.: s.n.], 2017. arXiv: 1707.03429 [quant-ph].

D-WAVE SYSTEMS INC. dwavesystems/dwave-ocean-sdk: Installer for D-Wave’s

Ocean tools. Available from: https://github.com/dwavesystems/dwave-ocean-sdk.

Visited on: 12 Aug. 2021.

DEUTSCH, David. Quantum theory, the Church-Turing principle and the universal

quantum computer. Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, The Royal Society London, v. 400, n. 1818, p. 97±117, 1985.

DEVELOPERS, Cirq. Cirq. [S.l.]: Zenodo, Aug. 2021. DOI: 10.5281/zenodo.5182845.

DEVITT, Simon J; MUNRO, William J; NEMOTO, Kae. Quantum error correction for

beginners. Reports on Progress in Physics, IOP Publishing, v. 76, n. 7, p. 076001,

June 2013. DOI: 10.1088/0034-4885/76/7/076001.

DIRAC, P. A. M. A new notation for quantum mechanics. Mathematical Proceedings

of the Cambridge Philosophical Society, Cambridge University Press, v. 35, n. 3,

p. 416±418, 1939. DOI: 10.1017/S0305004100021162.

FARHI, Edward; GOLDSTONE, Jeffrey; GUTMANN, Sam. A Quantum Approximate

Optimization Algorithm. [S.l.: s.n.], 2014. arXiv: 1411.4028 [quant-ph].

FEITOSA, Samuel S.; VIZZOTTO, Juliana K.; PIVETA, Eduardo K.; DU BOIS, Andre R.

FJQuantum ± A Quantum Object Oriented Language. Electronic Notes in

Theoretical Computer Science, v. 324, p. 67±77, 2016. WEIT 2015, the Third

Workshop-School on Theoretical Computer Science. ISSN 1571-0661. DOI:

10.1016/j.entcs.2016.09.007.

References 75

FEYNMAN, Richard P. Simulating physics with computers. International Journal of

Theoretical Physics, v. 21, n. 6, p. 467±488, June 1982. ISSN 1572-9575. DOI:

10.1007/BF02650179.

FU, X. et al. eQASM: An Executable Quantum Instruction Set Architecture. In: 2019

IEEE International Symposium on High Performance Computer Architecture (HPCA).

[S.l.: s.n.], 2019. P. 224±237. DOI: 10.1109/HPCA.2019.00040.

GARHWAL, Sunita; GHORANI, Maryam; AHMAD, Amir. Quantum Programming

Language: A Systematic Review of Research Topic and Top Cited Languages.

Archives of Computational Methods in Engineering, v. 28, n. 2, p. 289±310, Mar.

2021. ISSN 1886-1784. DOI: 10.1007/s11831-019-09372-6.

GAY, SIMON J. Quantum programming languages: survey and bibliography.

Mathematical Structures in Computer Science, Cambridge University Press, v. 16,

n. 4, p. 581±600, 2006. DOI: 10.1017/S0960129506005378.

GIDNEY, Craig; EKERÅ, Martin. How to factor 2048 bit RSA integers in 8 hours using

20 million noisy qubits. Quantum, Verein zur Förderung des Open Access

Publizierens in den Quantenwissenschaften, v. 5, p. 433, Apr. 2021. ISSN 2521-327X.

DOI: 10.22331/q-2021-04-15-433.

GREEN, Alexander S.; LUMSDAINE, Peter LeFanu; ROSS, Neil J.; SELINGER, Peter;

VALIRON, Benoît. Quipper: A Scalable Quantum Programming Language. In:

PROCEEDINGS of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation. Seattle, Washington, USA: Association for Computing

Machinery, 2013. (PLDI ’13), p. 333±342. DOI: 10.1145/2491956.2462177.

GROVER, Lov K. Quantum Mechanics Helps in Searching for a Needle in a Haystack.

Phys. Rev. Lett., American Physical Society, v. 79, p. 325±328, 2 July 1997. DOI:

10.1103/PhysRevLett.79.325.

HARRIS, Charles R. et al. Array programming with NumPy. Nature, v. 585,

p. 357±362, 2020. DOI: 10.1038/s41586-020-2649-2.

HIETALA, Kesha; RAND, Robert; HUNG, Shih-Han; WU, Xiaodi; HICKS, Michael. A

Verified Optimizer for Quantum Circuits. Proc. ACM Program. Lang., Association for

Computing Machinery, New York, NY, USA, v. 5, POPL, Jan. 2021. DOI:

10.1145/3434318.

References 76

ITEN, Raban; COLBECK, Roger; KUKULJAN, Ivan; HOME, Jonathan;

CHRISTANDL, Matthias. Quantum circuits for isometries. Phys. Rev. A, American

Physical Society, v. 93, p. 032318, 3 Mar. 2016. DOI: 10.1103/PhysRevA.93.032318.

ITOKO, Toshinari; RAYMOND, Rudy; IMAMICHI, Takashi; MATSUO, Atsushi.

Optimization of quantum circuit mapping using gate transformation and commutation.

Integration, v. 70, p. 43±50, 2020. ISSN 0167-9260. DOI:

10.1016/j.vlsi.2019.10.004.

JAVADIABHARI, Ali; PATIL, Shruti; KUDROW, Daniel; HECKEY, Jeff; LVOV, Alexey;

CHONG, Frederic T.; MARTONOSI, Margaret. ScaffCC: A Framework for Compilation

and Analysis of Quantum Computing Programs. In: PROCEEDINGS of the 11th ACM

Conference on Computing Frontiers. Cagliari, Italy: Association for Computing

Machinery, 2014. (CF ’14). DOI: 10.1145/2597917.2597939.

JONES, Tyson; BROWN, Anna; BUSH, Ian; BENJAMIN, Simon C. QuEST and High

Performance Simulation of Quantum Computers. Scientific Reports, v. 9, n. 1,

p. 10736, July 2019. ISSN 2045-2322. DOI: 10.1038/s41598-019-47174-9.

JORDAN, Stephen. Quantum Algorithm Zoo. Available from:

https://quantumalgorithmzoo.org. Visited on: 16 Aug. 2021.

KHAMMASSI, N.; GUERRESCHI, G. G.; ASHRAF, I.; HOGABOAM, J. W.;

ALMUDEVER, C. G.; BERTELS, K. cQASM v1.0: Towards a Common Quantum

Assembly Language. [S.l.: s.n.], 2018. arXiv: 1805.09607 [quant-ph].

KILLORAN, Nathan; IZAAC, Josh; QUESADA, Nicolás; BERGHOLM, Ville;

AMY, Matthew; WEEDBROOK, Christian. Strawberry Fields: A Software Platform for

Photonic Quantum Computing. Quantum, Verein zur Förderung des Open Access

Publizierens in den Quantenwissenschaften, v. 3, p. 129, Mar. 2019. ISSN 2521-327X.

DOI: 10.22331/q-2019-03-11-129.

KISSINGER, Aleks; WETERING, John van de. PyZX: Large Scale Automated

Diagrammatic Reasoning. Electronic Proceedings in Theoretical Computer

Science, Open Publishing Association, v. 318, p. 229±241, May 2020. ISSN

2075-2180. DOI: 10.4204/eptcs.318.14.

KITAEV, A. Yu. Quantum measurements and the Abelian Stabilizer Problem.

[S.l.: s.n.], 1995. arXiv: 9511026 [quant-ph].

References 77

LIU, Shusen; ZHOU, Li; GUAN, Ji; HE, Yang; DUAN, Runyao; YING, Mingsheng. Q|SI>

: a quantum programming environment. SCIENTIA SINICA Informationis, v. 47, n. 10,

p. 1300±1315, 2017. DOI: 10.1360/N112017-00095.

LLVM PROJECT. LLVM Language Reference Manual. Available from:

https://llvm.org/docs/LangRef.html. Visited on: 12 Aug. 2021.

MLNARIK, Hynek. Operational Semantics and Type Soundness of Quantum

Programming Language LanQ. [S.l.: s.n.], 2007. arXiv: 0708.0890 [quant-ph].

MOLINA, Abel; WATROUS, John. Revisiting the simulation of quantum Turing

machines by quantum circuits. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, The Royal Society, v. 475, n. 2226,

p. 20180767, June 2019. ISSN 1471-2946. DOI: 10.1098/rspa.2018.0767.

NAM, Yunseong; ROSS, Neil J.; SU, Yuan; CHILDS, Andrew M.; MASLOV, Dmitri.

Automated optimization of large quantum circuits with continuous parameters. npj

Quantum Information, v. 4, n. 1, p. 23, May 2018. ISSN 2056-6387. DOI:

10.1038/s41534-018-0072-4.

NIELSEN, Michael A.; CHUANG, Isaac L. Introduction to quantum mechanics. In:

QUANTUM Computation and Quantum Information: 10th Anniversary Edition. [S.l.]:

Cambridge University Press, 2010a. P. 60±119. DOI: 10.1017/CBO9780511976667.006.

NIELSEN, Michael A.; CHUANG, Isaac L. Quantum circuits. In: QUANTUM

Computation and Quantum Information: 10th Anniversary Edition. [S.l.]: Cambridge

University Press, 2010b. P. 171±215. DOI: 10.1017/CBO9780511976667.008.

ÖMER, Bernhard. A procedural formalism for quantum computing. 1998.

MA thesis.

ÖMER, Bernhard. Classical Concepts in Quantum Programming. International

Journal of Theoretical Physics, v. 44, n. 7, p. 943±955, July 2005. ISSN 1572-9575.

DOI: 10.1007/s10773-005-7071-x.

PAKIN, Scott. A quantum macro assembler. In: 2016 IEEE High Performance Extreme

Computing Conference (HPEC). [S.l.: s.n.], 2016. P. 1±8. DOI:

10.1109/HPEC.2016.7761637.

References 78

PARR, Terence. The definitive ANTLR 4 reference. [S.l.]: Pragmatic Bookshelf, 2013.

PAYKIN, Jennifer; RAND, Robert; ZDANCEWIC, Steve. QWIRE: A Core Language for

Quantum Circuits. In: PROCEEDINGS of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages. Paris, France: Association for Computing

Machinery, 2017. (POPL 2017), p. 846±858. DOI: 10.1145/3009837.3009894.

PIRES, Otto Menegasso; SANTIAGO, Rafael de; MARCHI, Jerusa. Two Stage

Quantum Optimization for the School Timetabling Problem. In: 2021 IEEE Congress

on Evolutionary Computation (CEC). [S.l.: s.n.], 2021. P. 2347±2353. DOI:

10.1109/CEC45853.2021.9504701.

PRESKILL, John. Quantum computing and the entanglement frontier. [S.l.: s.n.],

2012. arXiv: 1203.5813 [quant-ph].

PRESKILL, John. Quantum Computing in the NISQ era and beyond. Quantum, Verein

zur Förderung des Open Access Publizierens in den Quantenwissenschaften, v. 2,

p. 79, Aug. 2018. ISSN 2521-327X. DOI: 10.22331/q-2018-08-06-79.

RISTÈ, D.; BULTINK, C. C.; LEHNERT, K. W.; DICARLO, L. Feedback Control of a

Solid-State Qubit Using High-Fidelity Projective Measurement. Phys. Rev. Lett.,

American Physical Society, v. 109, p. 240502, 24 Dec. 2012. DOI:

10.1103/PhysRevLett.109.240502.

ROSA, Evandro Chagas Ribeiro da; TAKETANI, Bruno G. QSystem: bitwise

representation for quantum circuit simulations. [S.l.: s.n.], 2020. arXiv: 2004.03560

[quant-ph].

SELINGER, Peter. A Brief Survey of Quantum Programming Languages. In:

KAMEYAMA, Yukiyoshi; STUCKEY, Peter J. (Eds.). Functional and Logic

Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. P. 1±6.

SHOR, Peter W. Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer. SIAM Journal on Computing, v. 26, n. 5,

p. 1484±1509, 1997. DOI: 10.1137/S0097539795293172.

SINGH, Alexander; GIANNAKIS, Konstantinos; ANDRONIKOS, Theodore. Qumin, a

minimalist quantum programming language. [S.l.: s.n.], 2017. arXiv: 1704.04460

[cs.PL].

References 79

SIRAICHI, Marcos Yukio; SANTOS, Vinicius Fernandes dos; COLLANGE, Caroline;

PEREIRA, Fernando Magno Quintao. Qubit Allocation. In: PROCEEDINGS of the

2018 International Symposium on Code Generation and Optimization. Vienna, Austria:

Association for Computing Machinery, 2018. (CGO 2018), p. 113±125. DOI:

10.1145/3168822.

SMITH, Robert S.; CURTIS, Michael J.; ZENG, William J. A Practical Quantum

Instruction Set Architecture. [S.l.: s.n.], 2017. arXiv: 1608.03355 [quant-ph].

SOFGE, Donald A. A Survey of Quantum Programming Languages: History, Methods,

and Tools. In: SECOND International Conference on Quantum, Nano and Micro

Technologies (ICQNM 2008). [S.l.: s.n.], 2008a. P. 66±71. DOI:

10.1109/ICQNM.2008.15.

SOFGE, Donald A. A Survey of Quantum Programming Languages: History, Methods,

and Tools. In: SECOND International Conference on Quantum, Nano and Micro

Technologies (ICQNM 2008). [S.l.: s.n.], 2008b. P. 66±71. DOI:

10.1109/ICQNM.2008.15.

STEIGER, Damian S.; HÄNER, Thomas; TROYER, Matthias. ProjectQ: an open

source software framework for quantum computing. Quantum, Verein zur Förderung

des Open Access Publizierens in den Quantenwissenschaften, v. 2, p. 49, Jan. 2018.

ISSN 2521-327X. DOI: 10.22331/q-2018-01-31-49.

STRANO, Daniel; BOLLAY, Benn; NLEWYCKY; BABEJ, Tomas. vm6502q/qrack:

Issue #357 addressed. [S.l.]: Zenodo, May 2020. DOI: 10.5281/zenodo.3842287.

SVORE, Krysta et al. Q#: Enabling Scalable Quantum Computing and Development

with a High-Level DSL. In: PROCEEDINGS of the Real World Domain Specific

Languages Workshop 2018. Vienna, Austria: Association for Computing Machinery,

2018. (RWDSL2018). DOI: 10.1145/3183895.3183901.

VAN METER, Rodney; ITOH, Kohei M. Fast quantum modular exponentiation. Phys.

Rev. A, American Physical Society, v. 71, p. 052320, 5 May 2005. DOI:

10.1103/PhysRevA.71.052320.

VARTIAINEN, Juha J.; MÖTTÖNEN, Mikko; SALOMAA, Martti M. Efficient

Decomposition of Quantum Gates. Phys. Rev. Lett., American Physical Society, v. 92,

p. 177902, 17 Apr. 2004. DOI: 10.1103/PhysRevLett.92.177902.

References 80

VIRTANEN, Pauli et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nature Methods, v. 17, p. 261±272, 2020. DOI: 10.1038/s41592-019-0686-2.

WECKER, Dave; SVORE, Krysta M. LIQUi|>: A Software Design Architecture and

Domain-Specific Language for Quantum Computing. [S.l.: s.n.], 2014. arXiv:

1402.4467 [quant-ph].

WOOTTERS, W. K.; ZUREK, W. H. A single quantum cannot be cloned. Nature,

v. 299, n. 5886, p. 802±803, Oct. 1982. ISSN 1476-4687. DOI: 10.1038/299802a0.

Appendix

82

APPENDIX A ± PYTHON AST TRANSFORMATION FOR KET

To integrate the future variables with the Python statements if-then-else and

while, the Ket interpreter performs transformations on the Python Abstract Syntax

Trees (AST) before compiling. In this Appendix, we present how we implement those

transformations. In the codes below, we mix the Python syntax with the Python AST

structure to make the visualization easy. For information about Python AST, we refer to

its online documentation at https://docs.python.org/3/library/ast.html.

In the AST transformation, the Ket interpreter only changes the nodes If, While,

Break, and Continue, with the last two being trivial. Both nodes, If and While, have the

same structure: an expression test and two lists of statements, body and orelse, with

the last one representing the scope else. In Python, the else of a while only executes

the test is false.

A.1 STATEMENT IF-THEN-ELSE

Code A.1.1 shows the if-then transformation. First, we assign the test to a

variable (line 1); and verify if it is an instance of a future type as the new test (line

4). For the new body, we use labels and branching instructions to implement the state-

ment semantics (lines 6-11). This construction tells the classical computer to place the

if-then in the quantum code if the test is a future variable. If it is not, then execute

the code as it is (line 13). For the if-then-else, the only change is in the body, as in

Code A.1.2 lines 6-14.

A.2 STATEMENT WHILE-ELSE

Code A.2.1 shows the while integration. First, we need to create a new block in

the quantum code for the test of the while statement. We change the node While with

an If node with the same test as for the if-then statement (line 6). The body of the

new IF node is the construction of the while statement in the quantum computer (lines

8-14), and the orelse is the reconstruction of the original code using a while true (lines

17-24). We need this reconstruction to keep the semantic of the classical code end do

not execute the test expression twice. For the while-else, it only changes the body

(Code A.2.2, lines 8-18) and the statement reconstruction (Code A.2.2, lines 21-32).

For the Break node, the transformation changes it to a jump to the while.end block; and

for the Continue node, it changes to a jump to the while.test block. Code A.2.3 has of

how the break translates in the quantum code.

Those transformations keep the semantic of the classical code and add the

necessary checks to decide when to move the statement to the quantum computer.

The only obstacle of this implementation is the overhead added to every if-then-else

APPENDIX A. Python AST transformation for Ket 83

Code A.1.1 ± if-then transformation.

1 test_ = node.test

2 node.test = test_

3 If(

4 test=isinstance(test_, future),

5 body= [

6 then = label('if.then')

7 end = label('if.end')

8 branch(test_, then, end)

9 *node.body

10 jump(end)

11 end.begin()

12],

13 orelse=[node]

14)

Code A.1.2 ± if-else transformation.

1 test_ = node.test

2 node.test = test_

3 If(

4 test=isinstance(test_, future),

5 body= [

6 then = label('if.then')

7 else_ = label('if.else')

8 end = label('if.end')

9 branch(test_, then, else_)

10 *node.body

11 jump(end)

12 else_.begin()

13 *node.orelse

14 end.begin()

15],

16 orelse=[node]

17)

and while statement. It is possible to mitigate this overhead by adopting Ket as a Python

package and using the code_ket decorator to transform the AST of some functions only.

APPENDIX A. Python AST transformation for Ket 84

Code A.2.1 ± while transformation.

1 begin = label('while.test')

2 jump(begin)

3 begin.begin()

4 test_ = node.test

5 If(

6 test=isinstance(test_, future),

7 body= [

8 loop = label('while.loop')

9 end = label('while.end')

10 branch(test_, loop, end)

11 loop.begin()

12 *node.body

13 jump(begin)

14 end.begin()

15],

16 orelse=[

17 If(

18 test=test_,

19 body=[

20 not_done = True

21 while not_done:

22 *node.body

23 if not node.test:

24 not_done = False

25]

26)

27]

28)

Code A.2.2 ± while-else transformation.

1 begin = label('while.test')

2 jump(begin)

3 begin.begin()

4 test_ = node.test

5 If(

6 test=isinstance(test_, future),

7 body= [

8 loop = label('while.loop')

9 else_ = label('while.else')

10 end = label('while.end')

11 branch(test_, loop, else_)

12 loop.begin()

13 *node.body

14 jump(begin)

15 else.begin()

16 *node.orelse

17 jump(end)

18 end.begin()

19],

20 orelse=[

21 If(

22 test=test_,

23 body=[

24 not_done = True

25 while not_done:

26 *node.body

27 if not node.test:

28 not_done = False

29 if not not_done:

30 *node.oracle

31],

32 orelse=node.orelse

33)

34]

35)

APPENDIX A. Python AST transformation for Ket 85

Code A.2.3 ± Code 5.4.2 using the break statement.

1 q = quant(2)

2 with quant() as aux:

3 while future(True):

4 H(q)

5 ctrl(q, X, aux)

6 res = measure(aux)

7 if res == 0:

8 break

9 X(q+aux)

10 aux.free()

11 print(dump(q).show())

1 LABEL @entry

2 ALLOC q0

3 ALLOC q1

4 ALLOC q2

5 JUMP @while.test0

6 LABEL @while.test0

7 INT i0 1

8 BR i0 @while.loop1 @while.end2

9 LABEL @while.loop1

10 H q0

11 H q1

12 CTRL [q0, q1], X q2

13 MEASURE i1 [q2]

14 INT i2 0

15 INT i3 i1 == i2

16 BR 3 @if.then3 @if.end4

17 LABEL @if.then3

18 JUMP @while.end2

19 LABEL @dead.code5

20 JUMP @if.end4

21 LABEL @if.end4

22 X q0

23 X q1

24 X q2

25 JUMP @while.test0

26 LABEL @while.end2

27 FREE q2

28 DUMP [q0, q1]

86

APPENDIX B ± MICROSOFT Q# CODING CONTEST WITH KET

In this appendix, We solve problems from the Microsoft Q# Coding Contest Sum-

mer 2018 (Chapter B.1), Winter 2019 (Chapter B.2), and Summer 2020 (Chapter B.3)

using the quantum programming language Ket. We based all the Ket implementations

in the editorials of the events, keeping the same solution adapted for Ket. For each

problem, we present the link for its definition in the Codeforces site, which hosted the

contests, the Q# reference implementation, and the Ket solution.

In the reference implementations, we kept the comments, updated some dep-

recated syntax, and omitted the open statements. In the Ket solutions, we dropped

the import statements. In terms of quantum primitives, the Q# and Ket solutions are

equivalent, although the Ket implementation is significantly shorter than the Q# imple-

mentation due to the classical control. Even though both languages have the same

expressive power, the dynamism that Ket inherits from Python allows a more concise

quantum program without harm its readability.

B.1 MICROSOFT Q# CODING CONTEST - SUMMER 2018

The Microsoft Q# Coding Contest Summer 2018 editorial at https://assets.

codeforces.com/rounds/997-998/main-contest-editorial.pdf presents the problems

and explained solutions.

Generate superposition of all basis states (A1)

Problem https://codeforces.com/contest/1002/problem/A1

Q# Reference Implementation

1 operation Solve (qs : Qubit[]) : Unit {

2 for i in 1 .. Length(qs) {

3 H(qs[i-1]);

4 }

5 }

Ket Implementation

1 def solve(qs : quant):

2 H(qs)

Generate superposition of zero state and a basis state (A2)

Problem https://codeforces.com/contest/1002/problem/A2

APPENDIX B. Microsoft Q# Coding Contest with Ket 87

Q# Reference Implementation

1 operation Solve (qs : Qubit[], bits : Bool[]) : Unit {

2 // Hadamard first qubit

3 H(qs[0]);

4 // iterate through the bitstring and CNOT to qubits corresponding to true bits

5 for i in 1..Length(qs)-1 {

6 if (bits[i]) {

7 CNOT(qs[0], qs[i]);

8 }

9 }

10 }

Ket Implementation

1 def solve(qs : quant, bits : List[bool]):

2 H(qs[0])

3 with control(qs[0]):

4 idx = [i for i, b in enumerate(bits) if b and i]

5 X(qs.at(idx))

Generate superposition of two basis states (A3)

Problem https://codeforces.com/contest/1002/problem/A3

Q# Reference Implementation

1 function FindFirstDiff (bits0 : Bool[], bits1 : Bool[]) : Int {

2 mutable firstDiff = -1;

3 for i in 0 .. Length(bits1)-1 {

4 if (bits1[i] != bits0[i] && firstDiff == -1) {

5 set firstDiff = i;

6 }

7 }

8 return firstDiff;

9 }

10

11 operation Solve (qs : Qubit[], bits0 : Bool[], bits1 : Bool[]) : Unit {

12 // find the index of the first bit at which the bitstrings are different

13 let firstDiff = FindFirstDiff(bits0, bits1)

14 // Hadamard corresponding qubit to create superposition

15 H(qs[firstDiff]);

16 // iterate through the bitstrings again setting the final state of qubits

17 for i in 0 .. Length(qs)-1 {

18 if (bits0[i] == bits1[i]) {

APPENDIX B. Microsoft Q# Coding Contest with Ket 88

19 // if two bits are the same apply X or nothing

20 if (bits0[i]) {

21 X(qs[i]);

22 }

23 } else {

24 // if two bits are different, set their difference using CNOT

25 if (i > firstDiff) {

26 CNOT(qs[firstDiff], qs[i]);

27 if (bits0[i] != bits0[firstDiff]) {

28 X(qs[i]);

29 }

30 }

31 }

32 }

33 }

Ket Implementation

1 def solve(qs : quant, bits0 : List[bool], bits1 : List[bool]):

2 diffs = [i for i,j in enumerate(zip(bits0, bits1)) if j[0]!=j[1]]

3 H(qs[diffs[0]])

4 for i in range(len(qs)):

5 if bits0[i] and bits1[i]:

6 X(qs[i])

7 for i in diffs[1:]:

8 ctrl(qs[diffs[0]], X, qs[i])

9 if bits0[i] != bits0[diffs[0]]:

10 X(qs[i])

Generate W state (A4)

Problem https://codeforces.com/contest/1002/problem/A4

Q# Reference Implementation

1 operation Solve (qs : Qubit[]) : Unit {

2 let N = Length(qs);

3 if (N == 1) {

4 // base of recursion: |1>

5 X(qs[0]);

6 } else {

7 let K = N / 2;

8 // create W state on the first K qubits

9 Solve(qs[0..K-1]);

10 // the next K qubits are in |0...0> state allocate ancilla in |+> state

APPENDIX B. Microsoft Q# Coding Contest with Ket 89

11 use anc = Qubit[1] {

12 let here = anc[0];

13 H(here);

14 for i in 0..K-1 {

15 (Controlled SWAP)([here], (qs[i], qs[i+K]));

16 }

17 // unentangle here from the rest of the qubits

18 for i in K..N-1 {

19 CNOT(qs[i], here);

20 }

21 }

22 }

23 }

Ket Implementation

1 def solve(qs : quant):

2 n = len(qs)

3 if n == 1:

4 return X(qs)

5 k = n//2

6 solve(qs[:k])

7 with H(quant()) as aux:

8 for i in range(k):

9 with control(aux):

10 swap(qs[i], qs[i+k])

11 for i in range(k):

12 cnot(qs[i], aux)

13 X(aux).free()

Distinguish zero state and W state (B1)

Problem https://codeforces.com/contest/1002/problem/B1

Q# Reference Implementation

1 operation Solve (qs : Qubit[]) : Int {

2 // measure all qubits

3 mutable countOnes = 0;

4 for i in 0..Length(qs)-1 {

5 if (M(qs[i]) == One) {

6 set countOnes = countOnes + 1;

7 }

8 }

9 // if there is exactly one One, it’s W state,

APPENDIX B. Microsoft Q# Coding Contest with Ket 90

10 // if there are no Ones, it’s |0...0>

11 if (countOnes == 0) {

12 return 0;

13 }

14 return 1;

15 }

Ket Implementation

1 def solve(qs : quant) -> int:

2 return 0 if measure(qs).get() == 0 else 1

Distinguish GHZ state and W state (B2)

Problem https://codeforces.com/contest/1002/problem/B2

Q# Reference Implementation

1 operation Solve (qs : Qubit[]) : Int {

2 // measure all qubits; if there is exactly one One, it’s W state,

3 // if there are no Ones or all are Ones, it’s GHZ

4 mutable countOnes = 0;

5 for i in 0..Length(qs)-1 {

6 if (M(qs[i]) == One) {

7 set countOnes = countOnes + 1;

8 }

9 }

10 if (countOnes == 1) {

11 return 1;

12 }

13 return 0;

14 }

Ket Implementation

1 def solve(qs : quant) -> int:

2 return int(sum(int(i) for i in bin(measure(qs).get())[2:]) == 1)

Distinguish four 2-qubit states (B3)

Problem https://codeforces.com/contest/1002/problem/B3

Q# Reference Implementation

APPENDIX B. Microsoft Q# Coding Contest with Ket 91

1 operation Solve (qs : Qubit[]) : Int {

2 // These states are produced by H x H, applied to four basis states.

3 // To measure them, apply H x H followed by basis state measurement.

4 H(qs[0]);

5 H(qs[1]);

6 return ResultAsInt([M(qs[1]); M(qs[0])]);

7 }

Ket Implementation

1 def solve(qs : quant) -> int:

2 return measure(H(qs)).get()

Distinguish zero state and plus state with minimum error (C1)

Problem https://codeforces.com/contest/1002/problem/C1

Q# Reference Implementation

1 operation Solve (q : Qubit) : Int {

2 // Rotate the input state by Pi/8 means to apply Ry with angle 2*Pi/8.

3 Ry(0.25*PI(), q);

4 if (M(q) == Zero) {

5 return 0;

6 }

7 return 1;

8 }

Ket Implementation

1 def solve(q : quant) -> int:

2 return measure(RY(pi/4, q)).get()

Distinguish zero state and plus state without errors (C2)

Problem https://codeforces.com/contest/1002/problem/C2

Q# Reference Implementation

1 operation Solve (q : Qubit) : Int {

2 mutable output = 0;

3 let basis = RandomInt(2);

4 // randomize over std and had

APPENDIX B. Microsoft Q# Coding Contest with Ket 92

5 if (basis == 0) {

6 // use standard basis

7 let result = M(q);

8 if (result == One) {

9 // this can only arise if the state was |+>

10 set output = 1;

11 }

12 else {

13 set output = -1;

14 }

15 }

16 else {

17 // use Hadamard basis

18 H(q);

19 let result = M(q);

20 if (result == One) {

21 // this can only arise if the state was |0>

22 set output = 0;

23 }

24 else {

25 set output = -1;

26 }

27 }

28 return output;

29 }

Ket Implementation

1 def solve(q : quant) -> int:

2 def _solve(mea, ret):

3 return ret if mea(q).get() else -1

4 std = (measure, 1)

5 had = (lambda q : measure(H(q)), 0)

6 return _solve(*choice([std, had]))

B.2 MICROSOFT Q# CODING CONTEST - WINTER 2019

The Microsoft Q# Coding Contest Winter 2019 editorial at https://assets.codeforces.

com/rounds/1116/contest-editorial.pdf presents the problems and explained solu-

tions.

Generate state |00〉 + |01〉 + |10〉 (A1)

Problem https://codeforces.com/contest/1116/problem/A1

APPENDIX B. Microsoft Q# Coding Contest with Ket 93

Q# Reference Implementation

1 operation Solve1 (qs : Qubit[]) : Unit {

2 Ry(2.0 * ArcSin(1.0 / Sqrt(3.0)), qs[0]);

3 (ControlledOnInt(0, H))([qs[0]], qs[1]);

4 }

5

6 operation Solve2 (qs : Qubit[]) : Unit {

7 use ancilla = Qubit() {

8 repeat {

9 ApplyToEach(H, qs);

10 Controlled X(qs, ancilla);

11 let res = MResetZ(ancilla);

12 }

13 until (res == Zero)

14 fixup {

15 ResetAll(qs);

16 }

17 }

18 }

Ket Implementation

1 def solve_1(qs : quant):

2 RY(2*asin(1/sqrt(3)), qs[0])

3 with control(qs[0], on_state=0):

4 H(qs[1])

5

6 def solve_2(qs : quant):

7 with quant() as aux:

8 while future(1):

9 H(qs)

10 ctrl(qs, X, aux)

11 res = measure(aux)

12 if res == 0:

13 break

14 X(qs|aux)

15 aux.free()

Generate equal superposition of four basis states (A2)

Problem https://codeforces.com/contest/1116/problem/A2

Q# Reference Implementation

APPENDIX B. Microsoft Q# Coding Contest with Ket 94

1 operation Solve (qs : Qubit[], bits : Bool[][]) : Unit {

2 use anc = Qubit[2] {

3 // Put the ancillas into equal superposition of

4 // 2-qubit basis states

5 ApplyToEach(H, anc);

6 // Set up the right pattern on the main qubits

7 //cwith control on ancillas

8 for i in 0 .. 3 {

9 for j in 0 .. Length(qs) - 1 {

10 if ((bits[i])[j]) {

11 (ControlledOnInt(i, X))(anc, qs[j]);

12 }

13 }

14 }

15 // Uncompute the ancillas, using patterns on main qubits as ontrol

16 for i in 0 .. 3 {

17 if (i % 2 == 1) {

18 (ControlledOnBitString(bits[i], X))(qs, anc[0]);

19 }

20 if (i / 2 == 1) {

21 (ControlledOnBitString(bits[i], X))(qs, anc[1]);

22 }

23 }

24 }

25 }

Ket Implementation

1 def solve(qs : quant, bits : List[int]):

2 with quant(2) as aux:

3 H(aux)

4 for i in range(4):

5 for j in range(len(qs)):

6 if bits[i][j]:

7 with control(aux, on_state=i):

8 X(qs[j])

9 for i in range(4):

10 if i % 2:

11 with control(qs, on_state=bits[i]):

12 X(aux[1])

13 if i // 2:

14 with control(qs, on_state=bits[i]):

15 X(aux[0])

16 aux.free()

APPENDIX B. Microsoft Q# Coding Contest with Ket 95

Distinguish three-qubit states (B1)

Problem https://codeforces.com/contest/1116/problem/B1

Q# Reference Implementation

1 operation WState (qs : Qubit[]) : Unit {

2 let N = Length(qs);

3 if (N == 1) {

4 X(qs[0]);

5 } else {

6 let theta = ArcSin(1.0 / Sqrt(ToDouble(N)));

7 Ry(2.0 * theta, qs[0]);

8

9 (ControlledOnInt(0, WState))(qs[0 .. 0], qs[1 .. N - 1]);

10 }

11 }

12

13 operation Solve (qs : Qubit[]) : Int {

14 // map the first state to 000 state and the second one

15 // to something orthogonal to it

16 R1(-2.0 * PI() / 3.0, qs[1]);

17 R1(-4.0 * PI() / 3.0, qs[2]);

18 Adjoint WState(qs);

19 return MeasureInteger(LittleEndian(qs)) == 0 ? 0 | 1;

20 }

Ket Implementation

1 def prepare(qs : quant):

2 n = len(qs)

3 if n == 1:

4 X(qs[0])

5 else:

6 theta = asin(1.0 / sqrt(n))

7 RY(2.0 * theta, qs[0])

8 with control(qs[0], on_state=0):

9 prepare(qs[1:])

10

11 def solve(qs : quant) -> int:

12 phase(-2*pi/3, qs[1])

13 phase(-4*pi/3, qs[2])

14 adj(prepare, qs)

15 return 0 if measure(qs).get() == 0 else 1

APPENDIX B. Microsoft Q# Coding Contest with Ket 96

Not A, not B or not C? (B2)

Problem https://codeforces.com/contest/1116/problem/B2

Q# Reference Implementation

1 operation Solve (q : Qubit) : Int {

2 mutable output = 0;

3 let alpha = ArcCos(Sqrt(2.0 / 3.0));

4 use a = Qubit() {

5 Z(q);

6 CNOT(a, q);

7 Controlled H([q], a);

8 S(a);

9 X(q);

10 (ControlledOnInt(0, Ry))([a], (-2.0 * alpha, q));

11 CNOT(a, q);

12 Controlled H([q], a);

13 CNOT(a, q);

14 // finally, measure in the standard basis

15 let res0 = MResetZ(a);

16 let res1 = M(q);

17 // dispatch on the cases

18 if (res0 == Zero && res1 == Zero) {

19 set output = 0;

20 } elif (res0 == One && res1 == Zero) {

21 set output = 1;

22 } elif (res0 == Zero && res1 == One) {

23 set output = 2;

24 } else {

25 // this should never occur

26 set output = 3;

27 }

28 }

29 return output;

30 }

Ket Implementation

1 def solve(q : quant) -> int:

2 alpha = acos(sqrt(2/3))

3 with quant() as a:

4 Z(q)

5 ctrl(a, X, q)

6 ctrl(q, H, a)

7 S(a)

8 X(q)

APPENDIX B. Microsoft Q# Coding Contest with Ket 97

9 with control(a, on_state=0):

10 RY(-2*alpha, q)

11 with around(ctrl(0, X, 1), a|q):

12 ctrl(q, H ,a)

13 res0 = measure_free(a)

14 res1 = measure(q)

15 if res0.get() == res1.get() == 0:

16 return 0

17 elif res0.get() == 1 and res1.get() == 0:

18 return 1

19 elif res0.get() == 0 and res1.get() == 1:

20 return 2

21 else:

22 return 3

Alternating bits oracle (C1)

Problem https://codeforces.com/contest/1116/problem/C1

Q# Reference Implementation

1 operation FlipAlternating (register : Qubit[], firstIndex : Int) : Unit

2 // iterate over elements in every second position,

3 // starting with firstIndex

4 for i in firstIndex .. 2 .. Length(register) - 1 {

5 X(register[i]);

6 }

7 }

8

9 operation Solve (x : Qubit[], y : Qubit) : Unit {

10 // first mark the state with 1s in even positions,

11 // then mark the state with 1s in odd positions

12 for firstIndex in 0..1 {

13 FlipAlternating(x, firstIndex);

14 Controlled X(x, y);

15 Adjoint FlipAlternating(x, firstIndex);

16 }

17 }

Ket Implementation

1 def solve(x : quant, y : quant):

2 for i in range(2):

3 with around(X, x[i::2]):

4 ctrl(x, X, y)

APPENDIX B. Microsoft Q# Coding Contest with Ket 98

“Is the bit string periodic?º oracle (C2)

Problem https://codeforces.com/contest/1116/problem/C2

Q# Reference Implementation

1 operation Evaluate (queryReg : Qubit[], periodAux : Qubit[]) : Unit {

2 let N = Length(queryReg);

3 for period in 1 .. Length(periodAux) {

4 // Evaluate the possibility of the string having period K.

5 // For each pair of equal qubits, CNOT the last one into

6 // the first one.

7 for i in 0..N-period-1 {

8 CNOT(queryReg[i + period], queryReg[i]);

9 }

10 // If all pairs are equal, the first N-K qubits should be

11 // all in state 0.

12 (ControlledOnInt(0, X))(queryReg[0..N-period-1], periodAuxperiod-1]);

13 // Uncompute

14 for i in N-period-1..-1..0 {

15 CNOT(queryReg[i + period], queryReg[i]);

16 }

17 }

18 }

19

20 operation Solve (x : Qubit[], y : Qubit) : Unit {

21 // Try all possible periods and see whether any of them produces

22 // the necessary string. The result is OR on the period clauses

23 let N = Length(x);

24 // Valid periods are from 1 to N-1, so N-1 ancillas

25 use anc = Qubit[N - 1] {

26 Evaluate(x, anc);

27 (ControlledOnInt(0, X))(anc, y);

28 X(y);

29 Adjoint Evaluate(x, anc);

30 }

31 }

Ket Implementation

1 def evaluate_periods(query : quant, aux : quant):

2 for period in range(1, len(aux)+1):

3 cnot_ = lambda q, p: [cnot(q[i+p], q[i]) for i in range(len(q)p)]

4 with around(cnot_, query, period):

5 with control(query[:len(query)-period], on_state=0):

6 X(aux[period-1])

7

APPENDIX B. Microsoft Q# Coding Contest with Ket 99

8 def solve(x : quant, y : quant):

9 with quant(len(x)//2) as aux:

10 with around(evaluate_periods, x, aux):

11 with control(aux, on_state=0):

12 X(y)

13 X(y)

14 aux.free()

“Is the number of ones divisible by 3?º oracle (C3)

Problem https://codeforces.com/contest/1116/problem/C3

Q# Reference Implementation

1 operation AddMod3 (queryReg : Qubit[], ancillaReg : Qubit[]) : Unit

2 let sum = ancillaReg[0];

3 let carry = ancillaReg[1];

4 for q in queryReg {

5 // we need to implement addition mod 3:

6 // bit sum carry | sum carry

7 // 1 0 0 | 1 0

8 // 1 1 0 | 0 1

9 // 1 0 1 | 0 0

10 // compute sum bit

11 (ControlledOnBitString([true, false], X))([q, carry], sum);

12 // bit sum carry | carry

13 // 1 1 0 | 0

14 // 1 0 0 | 1

15 // 1 0 1 | 0

16 (ControlledOnBitString([true, false], X))([q, sum], carry);

17 }

18 }

19

20 operation Solve (x : Qubit[], y : Qubit) : Unit {

21 // Allocate two ancillas and implement a mini-adder on them:

22 // add each qubit to one of the ancillas,

23 // using the second one as a "carry".

24 // If both qubits end up in 0 state, the number of 1s is

25 // divisible by 3.

26 use anc = Qubit[2] {

27 WithA(AddMod3(x, _), (ControlledOnInt(0, X))(_, y), anc);

28 }

29 }

Ket Implementation

APPENDIX B. Microsoft Q# Coding Contest with Ket 100

1 def add_mod_3(query : quant, aux : quant):

2 for bit in query:

3 with control(bit, aux[0], on_state=[1, 0]):

4 X(aux[1])

5 with control(bit, aux[1], on_state=[1, 0]):

6 X(aux[0])

7

8 def solve(x : quant, y : quant):

9 with quant(2) as aux:

10 with around(add_mod_3, x, aux):

11 with control(aux, on_state=0):

12 X(y)

13 aux.free()

B.3 MICROSOFT Q# CODING CONTEST - SUMMER 2020

The Microsoft Q# Coding Contest Summer 2018 editorial at https://codeforces.

com/blog/entry/79208 presents the problems and explained solutions.

Figure out direction of CNOT (A1)

Problem https://codeforces.com/contest/1357/problem/A1

Q# Reference Implementation

1 operation Solve (unitary : (Qubit[] => Unit is Adj+Ctl)) : Int {

2 // apply to |01〉 and measure 1st qubit: CNOT12 will do

3 // nothing, CNOT21 will change to |11〉

4 use qs = Qubit[2] {

5 within { X(qs[1]); }

6 apply { unitary(qs); }

7 return MResetZ(qs[0]) == Zero ? 0 | 1;

8 }

9 }

Ket Implementation

1 def solve(unitary) -> int:

2 q = quant(2)

3 X(q[1])

4 unitary(q)

5 return 0 if measure(q[0]).get() == 0 else 1

APPENDIX B. Microsoft Q# Coding Contest with Ket 101

Distinguish I, CNOTs and SWAP (A2)

Problem https://codeforces.com/contest/1357/problem/A2

Q# Reference Implementation

1 operation Solve (unitary : (Qubit[] => Unit is Adj+Ctl)) : Int {

2 // first run: apply to |11〉; CNOT12 will give |10〉,

3 // CNOT21 will give |01〉, II and SWAP will remain |11〉

4 use qs = Qubit[2] {

5 X(qs[0]);

6 X(qs[1]);

7 unitary(qs);

8 let ind = MeasureInteger(LittleEndian(qs));

9 if (ind == 1 or ind == 2) {

10 // respective CNOT

11 return ind;

12 }

13 }

14 // second run: distinguish II from SWAP, apply to |01〉:

15 // II will remain |01〉, SWAP will become |10〉

16 use qs = Qubit[2] {

17 X(qs[1]);

18 unitary(qs);

19 let ind = MeasureInteger(LittleEndian(qs));

20 return ind == 1 ? 3 | 0;

21 }

22 }

Ket Implementation

1 def solve(unitary) -> int:

2 with X(quant(2)) as q

3 unitary(q)

4 m = measure(q.inverted()).get()

5 if m == 1 or m == 2:

6 return m

7 with quant(2) as q:

8 X(q[1])

9 unitary(q)

10 m = measure(q.inverted()).get()

11 return 3 if m == 1 else 0

Distinguish H from X (A3)

Problem https://codeforces.com/contest/1357/problem/A3

APPENDIX B. Microsoft Q# Coding Contest with Ket 102

Q# Reference Implementation

1 operation Solve (unitary : (Qubit => Unit is Adj+Ctl)) : Int {

2 // apply operation unitary - X - unitary to |0〉 state and measure:

3 // |0〉 means H, |1〉 means X

4 // X will end up as XXX = X, H will end up as

5 // HXH = Z (does not change |0〉 state)

6 use q = Qubit() {

7 within {

8 unitary(q);

9 } apply {

10 X(q);

11 }

12 return MResetZ(q) == Zero ? 0 | 1;

13 }

14 }

Ket Implementation

1 def solve(unitary) -> int:

2 q = quant(1)

3 with around(unitary, q):

4 X(q)

5 return measure(q).get()

Distinguish Rz from R1 (A4)

Problem https://codeforces.com/contest/1357/problem/A4

Q# Reference Implementation

1 operation Solve (unitary : ((Double, Qubit) => Unit is Adj+Ctl)) : Int {

2 use qs = Qubit[2] {

3 within {

4 H(qs[0]);

5 } apply {

6 Controlled unitary(qs[0..0], (2.0 * PI(), qs[1]));

7 }

8 return MResetZ(qs[0]) == Zero ? 1 | 0;

9 }

10 }

Ket Implementation

APPENDIX B. Microsoft Q# Coding Contest with Ket 103

1 def solve(unitary) -> int:

2 a, b = quant(2)

3 with around(H, X(a)):

4 ctrl(a, unitary, 2*pi, b)

5 return measure(a).get()

Distinguish Rz(θ) from Ry(θ) (A5)

Problem https://codeforces.com/contest/1357/problem/A5

Q# Reference Implementation

1 operation Solve (theta : Double, unitary : (Qubit => Unit is Adj+Ctl)) Int {

2 use q = Qubit() {

3 let k = Floor(PI() / theta);

4 mutable res = 0;

5 for rep in 0..10 {

6 for i in 1..k {

7 unitary(q);

8 }

9 if (M(q) == One) {

10 X(q);

11 set res = 1;

12 }

13 }

14 return res;

15 }

16 }

Ket Implementation

1 def solve(theta : float, unitary) -> int:

2 k = int(pi//theta)

3 for _ in range(10):

4 q = quant()

5 for _ in range(k):

6 unitary(q)

7 if measure(q).get() == 1:

8 return 1

9 return 0

Distinguish four Pauli gates (A6)

Problem https://codeforces.com/contest/1357/problem/A6

APPENDIX B. Microsoft Q# Coding Contest with Ket 104

Q# Reference Implementation

1 operation Solve(unitary : (Qubit => Unit is Adj+Ctl)) : Int {

2 // apply operation to the 1st qubit of a Bell state and measure in

3 // Bell basis

4 use qs = Qubit[2] {

5 H(qs[0]);

6 CNOT(qs[0], qs[1]);

7 unitary(qs[0]);

8 CNOT(qs[0], qs[1]);

9 H(qs[0]);

10 // after this I -> 00, X -> 01, Y -> 11, Z -> 10

11 let ind = MeasureInteger(LittleEndian(qs));

12 let returnValues = [0, 3, 1, 2];

13 return returnValues[ind];

14 }

15 }

Ket Implementation

1 def solve(unitary) -> int:

2 q = quant(2)

3 with around(H, q[0]):

4 with around(ctrl(0, X, 1), q):

5 unitary(q[0])

6 return [0, 1, 3, 2][measure(q).get()]

Distinguish Y, XZ, -Y and -XZ (A7)

Problem https://codeforces.com/contest/1357/problem/A7

Q# Reference Implementation

1 operation Solve(unitary : (Qubit => Unit is Adj+Ctl)) : Int {

2 // Run phase estimation on the unitary and the +1 eigenstate of the

3 // Y gate |0〉 + i|1〉

4

5 // Construct a phase estimation oracle from the unitary

6 let oracle = DiscreteOracle(Oracle_Reference(unitary, _, _));

7

8 // Allocate qubits to hold the eigenstate of U and the phase in a

9 // big endian register

10 mutable phaseInt = 0;

11 use (eigenstate, phaseRegister) = (Qubit[1], Qubit[2]) {

12 let phaseRegisterBE = BigEndian(phaseRegister);

APPENDIX B. Microsoft Q# Coding Contest with Ket 105

13 // Prepare the eigenstate of U

14 H(eigenstate[0]);

15 S(eigenstate[0]);

16 // Call library

17 QuantumPhaseEstimation(oracle, eigenstate, phaseRegisterBE);

18 // Read out the phase

19 set phaseInt = MeasureInteger(BigEndianAsLittleEndianphaseRegisterBE));

20 ResetAll(eigenstate);

21 ResetAll(phaseRegister);

22 }

23 // Convert the measured phase into return value

24 return phaseInt;

25 }

Ket Implementation

1 def solve(unitary) -> int:

2 target = S(H(quant()))

3 n = 5

4 m_qubits = quant(n)

5 H(m_qubits)

6 for i in range(n):

7 for _ in range(2**(n-i-1)):

8 ctrl(m_qubits[i], unitary, target)

9 adj(qft, m_qubits)

10 result = measure(m_qubits).get()/2**n

11 return {0.0 : 0, 0.75 : 1, 0.5 : 2, 0.25 : 3}[result]

"Is the bit string balanced?" oracle (B1)

Problem https://codeforces.com/contest/1357/problem/B1

Q# Reference Implementation

1 operation Solve(inputs : Qubit[], output : Qubit) : Unit is Adj+Ctl {

2 let log = BitSizeI(Length(inputs));

3 use inc = Qubit[log] {

4 within {

5 for q in inputs {

6 (Controlled Increment)([q], LittleEndian(inc));

7 }

8 } apply {

9 (ControlledOnInt(Length(inputs) / 2, X))(inc, output);

10 }

11 }

12 }

APPENDIX B. Microsoft Q# Coding Contest with Ket 106

Ket Implementation

1 def solve(inputs : quant, output : quant):

2 def increment(q):

3 if len(q) > 1:

4 ctrl(q[-1], increment, q[:-1])

5 X(q[-1])

6 size = ceil(log2(len(inputs)))+1

7 ctrl_incr = lambda qs, inc : [ctrl(q, increment, inc) for q in qs]

8 with quant(size) as inc:

9 with around(ctrl_incr, inputs, inc):

10 with control(inc, on_state=len(inputs)//2):

11 X(output)

12 inc.free()

"Is the number divisible by 3?" oracle (B2)

Problem https://codeforces.com/contest/1357/problem/B2

Q# Reference Implementation

1 operation IncrementMod3 (counterRegister : Qubit[]) : Unit is Adj+Ctl {

2 let sum = counterRegister[0];

3 let carry = counterRegister[1];

4 // we need to implement +1 mod 3:

5 // sum carry | sum carry

6 // 0 0 | 1 0

7 // 1 0 | 0 1

8 // 0 1 | 0 0

9 // compute sum bit

10 (ControlledOnInt(0, X))([carry], sum);

11 // sum carry | carry

12 // 1 0 | 0

13 // 0 0 | 1

14 // 0 1 | 0

15 (ControlledOnInt(0, X))([sum], carry);

16 }

17

18 operation Solve(register : Qubit[], output : Qubit) : Unit is Adj+Ctl {

19 use counter = Qubit[2] {

20 within {

21 for i in 0 .. Length(register) - 1 { // starting from LSB

22 if (i % 2 == 0) {

23 // i-th power of 2 is 1 mod 3

APPENDIX B. Microsoft Q# Coding Contest with Ket 107

24 Controlled IncrementMod3([register[i]], counter);

25 } else {

26 // i-th power of 2 is 2 mod 3 - same as -1,

27 // which is Adjoint of +1

28 Controlled Adjoint IncrementMod3([register[i]], ounter);

29 }

30 }

31 } apply {

32 // divisible by 3 only if the result is divisible by 3

33 (ControlledOnInt(0, X))(counter, output);

34 }

35 }

36 }

Ket Implementation

1 def solve(inputs : quant, output : quant):

2 def add3_(counter : quant):

3 sum = counter[0]

4 carry = counter[1]

5 with control(carry, on_state=0):

6 X(sum)

7 with control(sum, on_state=0):

8 X(carry)

9 add3 = lambda i, c : add3_(c) if i % 2 == 0 else adj(add3_, c)

10 cadd3 = lambda q, c : [ctrl(q[i], add3, i, c) for i in range(lenq))]

11 with quant(2) as counter:

12 with around(cadd3, inputs, counter):

13 ctrl(counter, X, output, on_state=0)

14 counter.free()

Prepare superposition of basis states with 0s (C1)

Problem https://codeforces.com/contest/1357/problem/C1

Q# Reference Implementation

1 operation Solve(qs : Qubit[]) : Unit {

2 use ancilla = Qubit() {

3 repeat {

4 // Create equal superposition of all basis states

5 ApplyToEach(H, qs);

6 // Create (our state) x |0〉 + |11...11〉 x |1〉

7 Controlled X(qs, ancilla);

8 let res = MResetZ(ancilla);

9 }

APPENDIX B. Microsoft Q# Coding Contest with Ket 108

10 until (res == Zero)

11 fixup {

12 ApplyToEach(X, qs);

13 }

14 }

15 }

Ket Implementation

1 def solve(qubits : quant):

2 with quant() as aux:

3 while future(True):

4 H(qubits)

5 ctrl(qubits, X, aux)

6 res = measure(aux)

7 if res == 0:

8 break

9 X(aux|qubits)

10 aux.free()

Prepare superposition of basis states with the same parity (C2)

Problem https://codeforces.com/contest/1357/problem/C2

Q# Reference Implementation

1 operation Solve(qs : Qubit[], parity : Int) : Unit {

2 use ancilla = Qubit() {

3 // Create equal superposition of all basis states

4 ApplyToEach(H, qs);

5 // Calculate the parity of states using CNOTs

6 ApplyToEach(CNOT(_, ancilla), qs);

7 let res = MResetZ(ancilla);

8 if ((res == Zero ? 0 | 1) != parity) {

9 X(qs[0]);

10 }

11 }

12 }

Ket Implementation

1 def solve(qubits : quant, parity : int):

2 with quant() as aux:

3 H(qubits)

4 for i in qubits:

APPENDIX B. Microsoft Q# Coding Contest with Ket 109

5 with control(i):

6 X(aux)

7 res = measure_free(aux)

8 if res != parity:

9 X(qubits[0])

	Title page
	Approval
	Acknowledgements
	Abstract
	Resumo
	RESUMO EXPANDIDO
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Research Problem
	Programming And Execution Scenario
	Objectives
	Work Delimitation
	Contributions
	Methodology
	Dissertation Structure

	Quantum Computation
	Quantum Bits In A Nutshell
	The Postulates of Quantum Mechanics
	State Space
	System Evolution
	Measurement
	Composed System

	Quantum Programming
	Programming particularities
	Features
	Limitations
	Construction Constraints

	Related Works: Quantum Programming Languages
	Classification
	Quantum Assembly Languages
	Quantum Circuit Description Languages
	Classical-Quantum Programming Languages

	Proposed Runtime Architecture
	Libket: Shared Library
	Runtime Quantum Code Generation
	Delayed Execution
	Inverse and Controlled Operations
	Dump & Metrics
	Libket CLI

	Quantum Gate Decomposition
	Ket Bitwise Simulator: Quantum Simulator
	Ket Bitwise Plugins
	Benchmark

	Quantum Hardware Execution
	Considerations

	Ket: A Novel Quantum Programming Language
	Types & Quantum Operations
	Controlled Operations
	Inverse Operations
	Quantum Computer's Control Flow
	Design decisions and limitations
	Considerations

	Conclusion
	References
	Python AST transformation for Ket
	Statement if-then-else
	Statement while-else

	Microsoft Q# Coding Contest with Ket
	Microsoft Q# Coding Contest - Summer 2018
	Microsoft Q# Coding Contest - Winter 2019
	Microsoft Q# Coding Contest - Summer 2020

		2021-10-07T15:23:18-0300

		2021-10-07T17:54:38-0300

