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Tensor networks are efficient representations of high-dimensional tensors which have been very
successful for physics and mathematics applications. We demonstrate how algorithms for optimizing
such networks can be adapted to supervised learning tasks by using matrix product states (tensor
trains) to parameterize models for classifying images. For the MNIST data set we obtain less than
1% test set classification error. We discuss how the tensor network form imparts additional structure
to the learned model and suggest a possible generative interpretation.

I. INTRODUCTION

The connection between machine learning and statis-
tical physics has long been appreciated [1–9], but deeper
relationships continue to be uncovered. For example,
techniques used to pre-train neural networks [8] have
more recently been interpreted in terms of the renor-
malization group [10]. In the other direction there has
been a sharp increase in applications of machine learn-
ing to chemistry, material science, and condensed matter
physics [11–19], which are sources of highly-structured
data and could be a good testing ground for machine
learning techniques.

A recent trend in both physics and machine learn-
ing is an appreciation for the power of tensor meth-
ods. In machine learning, tensor decompositions can be
used to solve non-convex optimization tasks [20, 21] and
make progress on many other important problems [22–
24], while in physics, great strides have been made in ma-
nipulating large vectors arising in quantum mechanics by
decomposing them as tensor networks [25–27]. The most
successful types of tensor networks avoid the curse of di-
mensionality by incorporating only low-order tensors, yet
accurately reproduce very high-order tensors through a
particular geometry of tensor contractions [27].

Another context where very large vectors arise is in
non-linear kernel learning, where input vectors x are
mapped into a higher dimensional space via a feature
map Φ(x) before being classified by a decision function

f(x) = W · Φ(x) . (1)

The feature vector Φ(x) and weight vector W can be ex-
ponentially large or even infinite. One approach to deal
with such large vectors is the well-known kernel trick,

⇡

FIG. 1. The matrix product state (MPS) decomposition, also
known as a tensor train. Lines represent tensor indices and
connecting two lines implies summation. For an introduction
to this graphical tensor notation see Appendix A.

which only requires working with scalar products of fea-
ture vectors, allowing these vectors to be defined only
implicitly [28].

In what follows we propose a rather different approach.
For certain learning tasks and a specific class of fea-
ture map Φ, we find the optimal weight vector W can
be approximated as a tensor network, that is, as a con-
tracted sequence of low-order tensors. Representing W
as a tensor network and optimizing it directly (without
passing to the dual representation) has many interest-
ing consequences. Training the model scales linearly in
the training set size; the cost for evaluating an input is
independent of training set size. Tensor networks are
also adaptive: dimensions of tensor indices internal to
the network grow and shrink during training to concen-
trate resources on the particular correlations within the
data most useful for learning. The tensor network form
of W presents opportunities to extract information hid-
den within the trained model and to accelerate training
by using techniques such as optimizing different internal
tensors in parallel [29]. Finally, the tensor network form
is an additional type of regularization beyond the choice
of feature map, and could have interesting consequences
for generalization.

One of the best understood types of tensor networks
is the matrix product state [26, 30], also known as the
tensor train decomposition [31]. Matrix product states
(MPS) have been very useful for studying quantum sys-
tems, and have recently been proposed for machine learn-
ing applications such as learning features of images [23]
and compressing the weight layers of neural networks
[24]. Though MPS are best suited for describing one-
dimensional systems, they are powerful enough to be ap-
plied to higher-dimensional systems as well.

There has been intense research into generalizations of
MPS better suited for higher dimensions and critical sys-
tems [32–34]. Though our proposed approach could gen-
eralize to these other types of tensor networks, as a proof
of principle we will only consider the MPS decomposition
in what follows. The MPS decomposition approximates
an order-N tensor by a contracted chain of N lower-order
tensors shown in Fig. 1. (Throughout we will use tensor
diagram notation; for a brief review see Appendix A.)
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Representing the weights W of Eq. (1) as an MPS al-
lows us to efficiently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

Φs1s2···sN (x) = φs1(x1)⊗ φs2(x2)⊗ · · ·φsN (xN ) . (2)

The tensor Φs1s2···sN is the tensor product of the same
local feature map φsj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each Φ(x) also has unit norm.

The full feature map Φ(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for Φ(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, Φ(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj ∈ [0, 1], a simple choice for the local feature map
φsj (xj) is

φsj (xj) =
[
cos
(π

2
xj

)
, sin

(π
2
xj

)]
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, φsj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map Φ(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between different components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · Φ(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map Φ to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N+1 tensor where ` is a tensor index and

https://github.com/emstoudenmire/TNML
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`

=
`

W `

�(x)
f `(x)

FIG. 4. The overlap of the weight tensor W ` with a specific
input vector Φ(x) defines the decision function f `(x). The
label ` for which f `(x) has maximum magnitude is the pre-
dicted label for x.

f `(x) is a function mapping inputs to the space of labels.
The tensor diagram for evaluating f `(x) for a particular
input is depicted in Fig. 4.

IV. MPS APPROXIMATION

Because the weight tensor W `
s1s2···sN has NL · dN com-

ponents, where NL is the number of labels, we need a
way to regularize and optimize this tensor efficiently. The
strategy we will use is to represent this high-order tensor
as a tensor network, that is, as the contracted product of
lower-order tensors.

A tensor network approximates the exponentially large
set of components of a high-order tensor in terms of
a much smaller set of parameters whose number grows
only polynomially in the size of the input space. Various
tensor network approximations impose different assump-
tions, or implicit priors, about the pattern of correla-
tion of the local indices when viewing the original tensor
as a distribution. For example, a MERA network can
explicitly model power-law decaying correlations while
a matrix product state (MPS) has exponentially decay-
ing correlations [27]. Yet an MPS can still approximate
power-law decays over quite long distances.

For the rest of this work, we will approximate W ` as
an MPS, which have the key advantage that methods for
manipulating and optimizing them are well understood
and highly efficient. Although MPS are best suited for
approximating tensors with a one-dimensional pattern of
correlations, they can also be a powerful approach for
decomposing tensors with two-dimensional correlations
as well [40].

An MPS decomposition of the weight tensor W ` has
the form

W `
s1s2···sN =

∑

{α}
Aα1
s1 A

α1α2
s2 · · ·A`;αjαj+1

sj · · ·AαN−1
sN (5)

and is illustrated in Fig. 5. Each “virtual” index αj has a
dimension m which is known as the bond dimension and
is the (hyper) parameter controlling the MPS approxi-
mation. For sufficiently large m an MPS can represent
any tensor [41]. The name matrix product state refers
to the fact that any specific component of the full ten-
sor W `

s1s2···sN can be recovered efficiently by summing
over the {αj} indices from left to right via a sequence of
matrix products.

``

⇡

FIG. 5. Approximation of the weight tensor W ` by a matrix
product state. The label index ` is placed arbitrarily on one
of the MPS tensors but can be moved to other locations.

In the above decomposition, the label index ` was ar-
bitrarily placed on the jth tensor, but this index can be
moved to any other tensor of the MPS without chang-
ing the overall W ` tensor it represents. To do this, one
contracts the jth tensor with one of its neighbors, then
decomposes this larger tensor using a singular value de-
composition such that ` now belongs to the neighboring
tensor—see Fig. 7(b).

In typical physics applications the MPS bond dimen-
sion m can range from 10 to 10,000 or even more; for the
most challenging physics systems one wants to allow as
large a bond dimension as possible since a larger dimen-
sion means more accuracy. However, when using MPS in
a machine learning setting, the bond dimension controls
the number of parameters of the model. So in contrast
to physics, taking too large a bond dimension might not
be desirable as it could lead to overfitting.

V. SWEEPING ALGORITHM FOR
OPTIMIZING WEIGHTS

Inspired by the very successful density matrix renor-
malization group (DMRG) algorithm developed in
physics, here we propose a similar algorithm which
“sweeps” back and forth along an MPS, iteratively min-
imizing the cost function defining the classification task.

For concreteness, let us choose to optimize the
quadratic cost

C =
1

2

NT∑

n=1

∑

`

(f `(xn)− δ`Ln
)2 (6)

where n runs over the NT training inputs and Ln is the
known correct label for training input n. (The symbol
δ`Ln

= 1 if ` equals Ln and zero otherwise, and represents

the ideal output of the function f ` for the input xn.)
Our strategy for reducing this cost function will be to

vary only two neighboring MPS tensors at a time within
the approximation Eq. (5). We could conceivably just
vary one at a time but as will become clear, varying two
tensors leads to a straightforward method for adaptively
changing the MPS bond dimension.

Say we want to improve the tensors at sites j and j+1
which share the jth bond. Assume we have moved the
label index ` to the jth MPS tensor. First we combine the
MPS tensors A`sj and Asj+1

into a single “bond tensor”
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(b)
=

j+1j

(c)
=

`

(a)
`

=
j+1j

`

`

�̃n�n

B`

�̃n

f `(xn)

(d)
=

`

(�`Ln
� f `(xn))

�̃n

�B`
X

n

FIG. 6. Steps leading to computing the gradient of the bond
tensor B` at bond j: (a) forming the bond tensor; (b) project-
ing a training input into the “MPS basis” at bond j; (c) com-
puting the decision function in terms of a projected input;
(d) the gradient correction to B`. The dark shaded circu-
lar tensors in step (b) are “effective features” formed from m
different linear combinations of many original features.

B
αj−1`αj+1
sjsj+1 by contracting over the index αj as shown in

Fig. 6(a).
Next we compute the derivative of the cost function C

with respect to the bond tensor B` in order to update
it using a gradient descent step. Because the rest of the
MPS tensors are kept fixed, let us show that to compute
the gradient it suffices to feed, or project, each input
xn through the fixed “wings” of the MPS as shown on
the left-hand side of Fig. 6(b). Doing so produces the

projected, four-index version of the input Φ̃n shown on
the right-hand of Fig. 6(b). The current decision function

can be efficiently computed from this projected input Φ̃n
and the current bond tensor B` as

f `(xn) =
∑

αj−1αj+1

∑

sjsj+1

Bαj−1`αj+1
sjsj+1

(Φ̃n)
sjsj+1

αj−1`αj+1
(7)

or as illustrated in Fig. 6(c). Thus the leading-order up-
date to the tensor B` can be computed as

∆B`
def
= − ∂C

∂B`
(8)

=

NT∑

n=1

∑

`′

(δ`
′

Ln
− f `′(xn))

∂f `
′
(xn)

∂B`
(9)

=

NT∑

n=1

(δ`Ln
− f `(xn))Φ̃n . (10)

Note that last expression above is a tensor with the same
index structure as B` as shown in Fig. 6(d).

Assuming we have computed the gradient, we use it
to compute a small update to B`, replacing it with
B` + α∆B` as shown in Fig. 7(a), where α is a small
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(a) ` ` `

+

(b) `

⇡
`

SVD

=(c)

A0
sj

A0`
sj+1

A0
sj

`

Usj S V `
sj+1

=

B`B0`

=

B0`

↵�B`

FIG. 7. Update (a) of bond tensor B`, (b) restoration of MPS
form, and (c) advancing a projected training input before op-
timizing the tensors at the next bond.

empirical paramater used to control convergence. (Note
that for this step one could also use the conjugate gradi-
ent method to improve the performance.) Having ob-
tained our improved B`, we must decompose it back
into separate MPS tensors to maintain efficiency and ap-
ply our algorithm to the next bond. Assume the next
bond we want to optimize is the one to the right (bond
j + 1). Then we can compute a singular value decom-
position (SVD) of B`, treating it as a matrix with a
collective row index (αj−1, sj) and collective column in-
dex (`, αj+1, sj+1) as shown in Fig. 7(b). Computing the
SVD this way restores the MPS form, but with the ` in-
dex moved to the tensor on site j + 1. If the SVD of B`

is given by

Bαj−1`αj+1
sjsj+1

=
∑

α′jαj

U
αj−1

sjα′j
Sα
′
j
αjV

αj`αj+1
sj+1

, (11)

then to proceed to the next step we define the new MPS
tensor at site j to be A′sj = Usj and the new tensor at

site j + 1 to be A′`sj+1
= SV `sj+1

where a matrix multipli-
cation over the suppressed α indices is implied. Crucially
at this point, only the m largest singular values in S are
kept and the rest are truncated (along with the corre-
sponding columns of U and V †) in order to control the
computational cost of the algorithm. Such a truncation is
guaranteed to produce an optimal approximation of the
tensorB`; furthermore if all of the MPS tensors to the left
and right of B` are formed from (possibly truncated) uni-
tary matrices similar to the definition of A′sj above, then

the optimality of the truncation of B` applies globally to
the entire MPS as well. For further background reading
on these technical aspects of MPS, see Refs. 26 and 42.

Finally, when proceeding to the next bond, it would be
inefficient to fully project each training input over again
into the configuration in Fig. 6(b). Instead it is only
necessary to advance the projection by one site using the
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MPS tensor set from a unitary matrix after the SVD as
shown in Fig. 7(c). This allows the cost of each local
step of the algorithm to remain independent of the size
of the input space, making the total algorithm scale only
linearly with input space size.

The above algorithm highlights a key advantage of
MPS and tensor networks relevant to machine learning
applications. Following the SVD of the improved bond
tensor B′`, the dimension of the new MPS bond can be
chosen adaptively based on number of large singular val-
ues (defined by a threshold chosen in advance). Thus the
MPS form of W ` can be compressed as much as possi-
ble, and by different amounts on each bond, while still
ensuring an optimal decision function.

The scaling of the above algorithm is d3m3N NLNT ,
where recall m is the MPS bond dimension; N the num-
ber of input components; NL the number of labels; and
NT the number of training inputs. In practice, the cost
is dominated by the large number of training inputs NT ,
so it would be very desirable to reduce this cost. One
solution could be to use stochastic gradient descent, but
while our experiments at blending this approach with
the MPS sweeping algorithm often reached single-digit
classification errors, we could not match the accuracy of
the full gradient. Mixing stochastic gradient with MPS
sweeping thus appears to be non-trivial but we believe it
is a promising direction for further research.

Finally, we note that a related optimization algorithm
was proposed for hidden Markov models in Ref. 43. How-
ever, in place of our SVD above, Ref. 43 uses a non-
negative matrix factorization. In a setting where nega-
tive weights are allowed, the SVD is the optimal choice
because it minimizes the distance between the original
tensor and product of factorized tensors. Furthermore,
our framework for sharing weights across multiple labels
and our use of local feature maps has interesting impli-
cations for training performance and for generalization.

VI. MNIST HANDWRITTEN DIGIT TEST

To test the tensor network approach on a realistic task,
we used the MNIST data set, which consists of grayscale
images of the digits zero through nine [44]. The calcu-
lations were implemented using the ITensor library [37].
Each image was originally 28×28 pixels, which we scaled
down to 14×14 by averaging clusters of four pixels; other-
wise we performed no further modifications to the train-
ing or test sets. Working with smaller images reduced the
time needed for training, with the tradeoff being that less
information was available for learning.

To approximate the classifier tensors as MPS, one must
choose a one-dimensional ordering of the local indices
s1, s2, . . . , sN . We chose a “zig-zag” ordering shown in
Fig. 8, which on average keeps spatially neighboring pix-
els as close to each other as possible along the one-
dimensional MPS path. We then mapped each grayscale
image x to a tensor Φ(x) using the local map Eq. (3).

1 2 3 4
15 16 17 18

14
2819 20 21

5 6 7

FIG. 8. One-dimensional ordering of pixels used to train MPS
classifiers for the MNIST data set (after shrinking images to
14× 14 pixels).

Using the sweeping algorithm in Section V to train the
weights, we found the algorithm quickly converged in the
number of passes, or sweeps over the MPS. Typically only
two or three sweeps were needed to see good convergence,
with test error rates changing only hundreths of a percent
thereafter.

Test error rates also decreased rapidly with the max-
imum MPS bond dimension m. For m = 10 we found
both a training and test error of about 5%; for m = 20
the error dropped to only 2%. The largest bond dimen-
sion we tried was m = 120, where after three sweeps we
obtained a test error of 0.97% (97 misclassified images
out of the test set of 10,000 images); the training set
error was 0.05% or 32 misclassified images.

VII. TWO-DIMENSIONAL TOY MODEL

To better understand the modeling power and regu-
larization properties of the class of models presented in
Sections II and III, consider a family of toy models where
the input space is two-dimensional (N = 2). The hidden
distribution we want to learn consists of two distribu-
tions, PA(x1, x2) and PB(x1, x2), from which we gener-
ate training data points labeled A or B respectively. For
simplicity we only consider the square region x1 ∈ [0, 1]
and x2 ∈ [0, 1].

To train the model, each training point (x1, x2) is
mapped to a tensor

Φ(x1, x2) = φs1(x1)⊗ φs2(x2) (12)

and the full weight tensors W `
s1s2 for ` ∈ {A,B} are op-

timized directly using gradient descent.
When selecting a model, our main control parameter

is the dimension d of the local indices s1 and s2. For the
case d = 2, the local feature map is chosen as in Eq. 3.
For d > 2 we generalize φsj (xj) to be a normalized d-
component vector as described in Appendix B.

A. Regularizing By Local Dimension d

To understand how the flexibility of the model grows
with increasing d, consider the case where PA and PB
are overlapping distributions. Specifically, we take each
to be a multivariate Gaussian centered respectively in
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the lower-right and upper-left of the unit square, and
to have different covariance matrices. In Fig. 9 we
show the theoretically optimal decision boundary that
best separates A points (crosses, red region) from B
points (squares, blue region), defined by the condition
PA(x1, x2) = PB(x1, x2). To make a training set, we sam-
ple 100 points from each of the two distributions.

Next, we optimize the toy model for our overlapping
training set for various d. The decision boundary learned
by the d = 2 model in Fig. 10(a) shows good agree-
ment with the optimal one in Fig. 9. Because the two
sets are non-separable and this model is apparently well
regularized, some of the training points are necessarily
misclassified—these points are colored white in the fig-
ure.

The d = 3 decision boundary shown in Fig. 10 begins
to show evidence of overfitting. The boundary is more
complicated than for d = 2 and further from the opti-
mal boundary. Finally, for a much larger local dimension
d = 6 there is extreme overfitting. The decision bound-
ary is highly irregular and is more reflective of the specific
sampled points than the underlying distribution. Some
of the overfitting behavior reveals the structure of the
model; at the bottom and top of Fig. 10(c) there are
lobes of one color protruding into the other. These likely
indicate that the finite local dimension still somewhat
regularizes the model; otherwise it would be able to over-
fit even more drastically by just surrounding each point
with a small patch of its correct color.

B. Non-Linear Decision Boundary

To test the ability of our proposed class of models to
learn highly non-linear decision boundaries, consider the
spiral shaped boundary in Fig. 11(a). Here we take PA
and PB to be non-overlapping with PA uniform on the

FIG. 9. Training points sampled from multivariate Gaussian
distributions PA(x1, x2) [crosses] and PB(x1, x2) [squares].
The curve separating the red A region from the blue B re-
gion is the theoretically optimal decision boundary.

(a)

(b)

(c)

FIG. 10. Toy models learned from the overlapping data set
Fig. 9. The results shown are for local dimension (a) d = 2,
(b) d = 3, and (c) d = 6. Background colors show how every
spatial point would be classified. Misclassified data points are
colored white.

red region and PB uniform on the blue region.

In Fig. 11(b) we show the result of training a model
with local dimension d = 10 on 500 sampled points, 250
for each region (crosses for region A, squares for region
B). The learned model is able to classify every training
point correctly, though with some overfitting apparent
near regions with too many or too few sampled points.
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(a) (b)

FIG. 11. Toy model reconstruction of interlocking spiral-
shaped distribution: (a) original distribution and (b) sampled
points and distribution learned by model with local dimension
d = 10.

VIII. INTERPRETING TENSOR NETWORK
MODELS

A natural question is which set of functions of the
form f `(x) = W ` · Φ(x) can be realized when using a
tensor-product feature map Φ(x) of the form Eq. (2) and
a tensor-network decomposition of W `. As we will argue,
the possible set of functions is quite general, but taking
the tensor network structure into account provides ad-
ditional insights, such as determining which features the
model actually uses to perform classification.

A. Representational Power

To simplify the question of which decision functions
can be realized for a tensor-product feature map of the
form Eq. (2), let us fix ` to a single label and omit it
from the notation. We will also consider W to be a com-
pletely general order-N tensor with no tensor network
constraint. Then f(x) is a function of the form

f(x) =
∑

{s}
Ws1s2···sNφ

s1(x1)⊗ φs2(x2)⊗ · · ·φsN (xN ) .

(13)

If the functions {φs(x)}, s = 1, 2, . . . , d form a basis for a
Hilbert space of functions over x ∈ [0, 1], then the tensor
product basis

φs1(x1)⊗ φs2(x2)⊗ · · ·φsN (xN ) (14)

forms a basis for a Hilbert space of functions over
x ∈ [0, 1]×N . Moreover, if the basis {φs(x)} is complete,
then the tensor product basis is also complete and f(x)
can be any square integrable function.

Next, consider the effect of restricting the local dimen-
sion to d = 2 as in the local feature map of Eq. (3)
which was used to classify grayscale images in our MNIST
benchmark in Section VI. Recall that for this choice of
φ(x),

φ(0) = [1, 0] (15)

φ(1) = [0, 1] . (16)

Thus if x̂ is a black and white image with pixel values of
only x̂j = {0, 1}, then f(x̂) is equal to a single component
Ws1s2...sN of the weight tensor. Because each of these
components is an independent parameter (assuming no
further approximation of W ), f(x̂) is a highly non-linear,
in fact arbitrary, function when restricted to these black
and white images.

Returning to the case of grayscale images x with pixels
xj ∈ [0, 1], f(x) cannot be an arbitrary function over
this larger space of images for finite d. For example,
if one considers the d = 2 feature map Eq. (3), then
when considering the dependence of f(x) on only a single
pixel xj (all other pixels being held fixed), it has the
functional form a cos(π/2xj) + b sin(π/2xj) where a and
b are constants determined by the (fixed) values of the
other pixels.

B. Implicit Feature and Kernel Selection

Of course we have not been considering an arbitrary
weight tensor W ` but instead approximating the weight
tensor as an MPS tensor network. The MPS form im-
plies that the decision function f `(x) has interesting ad-
ditional structure. One way to analyze this structure is
to separate the MPS into a central tensor, or core tensor
Cαi`αi+1 on some bond i and constrain all MPS site ten-
sors to be left orthogonal for sites j ≤ i or right orthogonal
for sites j ≥ i. This means W ` has the decomposition

W `
s1s2···sN =

∑

{α}
Uα1
s1 · · ·Uαi

αi−1siC
`
αiαi+1

V αi+1
si+1αi+2

· · ·V αN−1
sN

(17)

as illustrated in Fig. 12(a). To say the U and V tensors
are left or right orthogonal means when viewed as ma-
trices Uαj−1sj

αj and V αj−1
sjαj

these tensors have the

property U†U = I and V V † = I where I is the identity;
these orthogonality conditions can be understood more
clearly in terms of the diagrams in Fig. 12(b). Any MPS
can be brought into the form Eq. (17) through an effi-
cient sequence of tensor contractions and SVD operations
similar to the steps in Fig. 7(b).

The form in Eq. (17) suggests an interpretation where
the decision function f `(x) acts in three stages. First, an
input x is mapped into the exponentially larger feature
space defined by Φ(x). Next, the dN dimensional feature
vector Φ is mapped into a much smaller m2 dimensional
space by contraction with all the U and V site tensors
of the MPS. This second step defines a new feature map
Φ̃(x) with m2 components as illustrated in Fig. 12(c).

Finally, f `(x) is computed by contracting Φ̃(x) with C`.

To justify calling Φ̃(x) a feature map, it follows from
the left- and right-orthogonality conditions of the U and
V tensors of the MPS Eq. (17) that the indices αi and
αi+1 of the core tensor C label an orthonormal basis for
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`Us1
Us2 Us3

Vs4
Vs5

Vs6

C
W `

s1···s6
=

U†
sj

Usj

= =
Vsj

V †
sj

(a)

(b)

(c)

�(x)
= �̃(x)

FIG. 12. (a) Decomposition of W ` as an MPS with a central
tensor and orthogonal site tensors. (b) Orthogonality con-
ditions for U and V type site tensors. (c) Transformation

defining a reduced feature map Φ̃(x).

a subspace of the original feature space. The vector Φ̃(x)
is the projection of Φ(x) into this subspace.

The above interpretation implies that training an MPS
model uncovers a relatively small set of important fea-
tures and simulatenously learns a decision function based
only on these reduced features. This picture is similar to
popular interpretations of the hidden and output layers
of shallow neural network models [45]. A similar interpre-
tation of an MPS as learning features was first proposed
in Ref. 23, though with quite a different scheme for repre-
senting data than what is used here. It is also interesting
to note that an interpretation of the U and V tensors as
combining and projecting features into only the m most
important combinations can be applied at any bond of
the MPS. For example, the tensor U

αj+1
αjsj tensor at site j

can be viewed as defining a vector of m features labeled
by αj+1 by forming linear combinations of products of
the features φsj (xj) and the features αj defined by the
previous U tensor, similar to the contraction in Fig. 7(c).

C. Generative Interpretation

Because MPS were originally introduced to represent
wavefunctions of quantum systems [30], it is tempting to
interpret a decision function f `(x) with an MPS weight
vector as a wavefunction. This would mean interpreting
|f `(x)|2 for each fixed ` as a probability distribution func-
tion over the set of inputs x belonging to class `. A major
motivation for this interpretation would be that many in-
sights from physics could be applied to machine learned
models. For example, tensor networks in the same family
as MPS, when viewed as defining a probability distribu-
tion, can be used to efficiently perform perfect sampling
of the distribution they represent [46].

Let us investigate the properties of W ` and Φ(x) re-
quired for a consistent interpretation of |f `(x)|2 as a
probability distribution. For |f `(x)|2 to behave like a

probability distribution for a broad class of models, we
require for some integration measure dµ(x) that the dis-
tribution is normalized as

∑

`

∫

x

|f `(x)|2dµ(x) = 1 (18)

no matter what weight vector W ` the model has, as long
as the weights are normalized as

∑

`

∑

s1,s2,...,sN

W̄ `
s1s2···sNW

`
s1s2···sN = 1 . (19)

This condition is automatically satisfied for tensor-
product feature maps Φ(x) of the form Eq. (2) if the
constituent local maps φs(x) have the property

∫

x

φ̄s(x)φs
′
(x) dµ(x) = δss′ , (20)

that is, if the components of φs are orthonormal functions
with respect to the measure dµ(x). Furthermore, if one
wants to demand, after mapping to feature space, that
any input x itself defines a normalized distribution, then
we also require the local vectors to be normalized as

∑

s

|φs(x)|2 = 1 (21)

for all x ∈ [0, 1].
Unfortunately neither the local feature map Eq. (3)

nor its generalizations in Appendix B meet the first cri-
terion Eq. (20). A different choice that satisfies both
the orthogonality condition Eq. (20) and normalization
condition Eq. (21) could be

φ(x) =
[

cos(πx), sin(πx)
]
. (22)

However, this map is not suitable for inputs like grayscale
pixels since it is anti-periodic over the interval x ∈ [0, 1]
and would lead to a periodic probability distribution. An
example of an orthogonal, normalized map which is not
periodic on x ∈ [0, 1] is

φ(x) =
[
ei(3π/2)x cos

(π
2
x
)
, e−i(3π/2)x sin

(π
2
x
)]

.

(23)

This local feature map meets the criteria Eqs. (20) and
(21) if the integration measure chosen to be dµ(x) = 2dx.

As a basic consistency check of the above genera-
tive interpretation, we performed an experiment on our
toy model of Section VII, using the local feature map
Eq. (23). Recall that our toy data can have two possible
labels A and B. To test the generative interpretation, we
first generated a single, random “hidden” weight tensor
W . From this weight tensor we sampled Ns data points
in a two step process:

1. Sample a label ` = A or ` = B according to the
probabilities PA =

∫
x
|fA(x)|2 =

∑
s1s2
|WA

s1s2 |2
and PB = 1− PA.
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FIG. 13. Average KL divergence between the learned
model and original model used to generate data for a two-
dimensional toy system as a function of number of sampled
training points Ns. The solid curve is a fit of the form σ/

√
Ns.

2. Sample a data point x = (x1, x2) according to the
distribution p(x|`) = |f `(x)|2/P` for the chosen `.

For each collection of sampled points we then trained a
toy model with weight tensor W̃ using the log-likelihood
cost function

C = −
Ns∑

n=1

log |fLn(xn)|2 (24)

where recall Ln is the known correct label for training
point n.

We repeated this procedure multiple times for vari-
ous sample sizes Ns, each time computing the Kullback-
Liebler divergence of the learned versus exact distribu-
tion

DKL =
∑

`

∫

x

p(`,x) log
(p(`,x)

p̃(`,x)

)
(25)

where p(`,x) = |f `(x)|2 = |W ` · Φ(x)|2 and p̃(`,x) has

similar definition in terms of W̃ . The resulting aver-
age DKL as a function of number of sampled training
points Ns is shown in Fig. 13 along with a fit of the form
σ/
√
Ns where σ is a fitting parameter. The results indi-

cate that given enough training data, the learning process
can eventually recapture the original probabilistic model
that generated the data.

IX. DISCUSSION

We have introduced a framework for applying
quantum-inspired tensor networks to multi-class super-
vised learning tasks. While using an MPS ansatz for
the model parameters worked well even for the two-
dimensional data in our MNIST experiment, other tensor
networks such as PEPS, which are explicitly designed for

two-dimensional systems, may be more suitable and offer
superior performance. Much work remains to determine
the best tensor network for a given domain.

Representing the parameters of our model by a tensor
network has many useful and interesting implications. It
allows one to work with a family of non-linear kernel
learning models with a cost that is linear in the training
set size for optimization, and independent of training set
size for evaluation, despite using a very expressive feature
map (recall in our setup, the dimension of feature space
is exponential in the size of the input space). There is
much room to improve the optimization algorithm we de-
scribed, adopting it to incorporate standard tricks such
as mini-batches, momentum, or adaptive learning rates.
It would be especially interesting to investigate unsuper-
vised techniques for initializing the tensor network.

Additionally, while the tensor network parameteriza-
tion of a model clearly regularizes it in the sense of re-
ducing the number of parameters, it would be helpful
to understand the consquences of this regularization for
specific learning tasks. It could also be fruitful to in-
clude standard regularizations of the parameters of the
tensor network, such as weight decay or L1 penalties.
We were surprised to find good generalization without
using explicit parameter regularization. For issues of in-
terpretability, the fact that tensor networks are composed
only of linear operations could be extremely useful. For
example, it is straightforward to determine directions in
feature space which are orthogonal to (or projected to
zero by) the weight tensor W .

There exist tensor network coarse-graining approaches
for purely classical systems [47, 48], which could possibly
be used instead of our approach. However, mapping
the data into an extremely high-dimensional Hilbert
space is likely advantageous for producing models
sensitive to high-order correlations among features. We
believe there is great promise in investigating the power
of quantum-inspired tensor networks for many other
machine learning tasks.

Note: while preparing our final manuscript, Novikov et
al. [49] published a related framework for parameterizing
supervised learning models with MPS (tensor trains).
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FIG. 15. Tensor diagrams for (a) a matrix-vector multiplica-
tion and (b) a more general tensor contraction.

Appendix A: Graphical Notation for Tensor
Networks

Though matrix product states (MPS) have a relatively
simple structure, more powerful tensor networks, such as
PEPS and MERA, have such complex structure that tra-
ditional tensor notation becomes unwieldy. For these net-
works, and even for MPS, it is helpful to use a graphical
notation. For some more complete reviews of this nota-
tion and its uses in various tensor networks see Ref. 25
and 42.

The basic graphical notation for a tensor is to represent
it as a closed shape. Typically this shape is a circle,
though other shapes can be used to distinguish types of
tensors (there is no standard convention for the choice
of shapes). Each index of the tensor is represented by
a line emanating from it; an order-N tensor has N such
lines. Figure 14 shows examples of diagrams for tensors
of order one, two, and three.

To indicate that a certain pair of tensor indices are con-
tracted, they are joined together by a line. For example,
Fig. 15(a) shows the contraction of an an order-1 tensor
with the an order-2 tensor; this is the usual matrix-vector
multiplication. Figure 15(b) shows a more general con-
traction of an order-4 tensor with an order-3 tensor.

Graphical tensor notation offers many advantages over
traditional notation. In graphical form, indices do not
usually require names or labels since they can be dis-
tinguished by their location in the diagram. Operations
such as the outer product, tensor trace, and tensor con-
traction can be expressed without additional notation;
for example, the outer product is just the placement of
one tensor next to another. For a network of contracted

tensors, the order of the final resulting tensor can be read
off by simply counting the number of unpaired lines left
over. For example, a complicated set of tensor contrac-
tions can be recognized as giving a scalar result if no
index lines remain unpaired.

Finally, we note that a related notation for sparse or
structured matrices in a direct-sum formalism can be
used, and appears extensively in Ref. 50.

Appendix B: Higher-Dimensional Local Feature
Map

As discussed in Section II, our strategy for using ten-
sor networks to classify input data begins by mapping
each component xj of the input data vector x to a d-
component vector φsj (xj), sj = 1, 2, . . . , d. We always
choose φsj (xj) to be a unit vector in order to apply
physics techniques which typically assume normalized
wavefunctions.

For the case of d = 2 we have used the mapping

φsj (xj) =
[

cos
(π

2
xj

)
, sin

(π
2
xj

)]
. (B1)

A straightforward way to generalize this mapping to
larger d is as follows. Define θj = π

2xj . Because

(cos2(θj) + sin2(θj)) = 1, then also

(cos2(θj) + sin2(θj))
d−1 = 1 . (B2)

Expand the above identity using the binomial co-
effiecients

(
n
k

)
= n!/(k!(n− k)!).

(cos2(θj) + sin2(θj))
d−1 = 1

=

d−1∑

p=0

(
d− 1

p

)
(cos θj)

2(d−1−p)(sin θj)
2p . (B3)

This motivates defining φsj (xj) to be

φsj (xj) =

√(
d− 1

sj − 1

)
(cos(

π

2
xj))

d−sj (sin(
π

2
xj))

sj−1

(B4)
where recall that sj runs from 1 to d. The above defini-
tion reduces to the d = 2 case Eq. (B1) and guarantees
that

∑
sj
|φsj |2 = 1 for larger d. (These functions are ac-

tually a special case of what are known as spin coherent
states.)

Using the above mapping φsj (xj) for larger d allows the
product W ` · Φ(x) to realize a richer class of functions.
One reason is that a larger local dimension allows the
weight tensor to have many more components. Also, for
larger d the components of φsj (xj) contain ever higher
frequency terms of the form cos

(
π
2xj
)
, cos

(
3π
2 xj

)
, . . . ,

cos
( (d−1)π

2 xj
)

and similar terms replacing cos with sin.
The net result is that the decision functions realizable
for larger d are composed from a more complete basis of
functions and can respond to smaller variations in x.
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